

In reality, when we combine two atomic orbitals, we get back two molecular orbitals

In reality, when we combine two atomic orbitals, we get back two molecular orbitals

Mixing of the **two** atomic orbitals creates one **bonding** molecular orbital (lower in energy) one **anti-bonding** molecular orbital (higher in energy)

In reality, when we combine two atomic orbitals, we get back two molecular orbitals

Mixing of the **two** atomic orbitals creates one **bonding** molecular orbital (lower in energy) one **anti-bonding** molecular orbital (higher in energy)

In reality, when we combine two atomic orbitals, we get back two molecular orbitals

Mixing of the **two** atomic orbitals creates one **bonding** molecular orbital (lower in energy) one **anti-bonding** molecular orbital (higher in energy)

Absolute rule: if you "mix" n atomic orbitals, you get back n molecular orbitals

@ Brooks/Cole, Cengage Learning

(we're only showing bonding orbitals)

Fig. 9-2, p. 407

Move away from thinking of p and s orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** hybrid atomic orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** <u>hybrid atomic orbitals</u>

Combine one 2s and one 2p atomic orbital

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** hybrid atomic orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** <u>hybrid atomic orbitals</u>

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** hybrid atomic orbitals

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** <u>hybrid atomic orbitals</u>

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** hybrid atomic orbitals

Combine one 2s and two 2p atomic orbitals

Get back three sp² hybrid atomic orbitals

1

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals

We can combine **n** atomic orbitals, to get back **n** hybrid atomic orbitals

Combine one 2s and three 2p atomic orbitals

Get back four sp³ hybrid atomic orbitals

@ Brooks/Cole, Cengage Learning

Fig. 9-5, p. 410

Conservation of energy

The sum of the energies of the starting orbitals must equal the sum of the energies of the resulting orbitals

Conservation of energy

The sum of the energies of the starting orbitals must equal the sum of the energies of the resulting orbitals

Take home: don't mix more atomic orbitals than you need to

sp³ hybridization

sp³ hybridization

C—H bond is formed from overlap of C atom sp^3 hybrid orbital and H 1s orbital.

Lewis structure

109.5°

Molecular model

Orbital representation

C—C bond is formed from overlap of C atom *sp*³ hybrid orbitals.

sp³ hybridized carbon atom.

H---C---H | H

Lewis structure

sp² hybridization

Fig. 9-8, p. 414

sp² hybridization

Fig. 9-8, p. 414

sp² hybridization

Fig. 9-8, p. 414

sp hybridization

Fig. 9-9, p. 415

sp hybridization

Fig. 9-9, p. 415

sp hybridization

Fig. 9-9, p. 415