

We can combine two atomic orbitals to create a new molecular orbital

We can combine two atomic orbitals to create a new molecular orbital

In reality, when we combine two atomic orbitals, we get back two molecular orbitals

We can combine two atomic orbitals to create a new molecular orbital

In reality, when we combine two atomic orbitals, we get back two molecular orbitals
Mixing of the two atomic orbitals creates one bonding molecular orbital (lower in energy) one anti-bonding molecular orbital (higher in energy)

We can combine two atomic orbitals to create a new molecular orbital

In reality, when we combine two atomic orbitals, we get back two molecular orbitals
Mixing of the two atomic orbitals creates

We can combine two atomic orbitals to create a new molecular orbital

In reality, when we combine two atomic orbitals, we get back two molecular orbitals
Mixing of the two atomic orbitals creates one bonding molecular orbital (lower in energy)
 one anti-bonding molecular orbital (higher in energy)

Absolute rule: if you "mix" n atomic orbitals, you get back n molecular orbitals

Switch our Thinking

Move away from thinking of p and s orbitals

Switch our Thinking

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Switch our Thinking

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Combine one 2 s and one 2 p atomic orbital

Switch our Thinking

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Combine one 2 s and one 2 p atomic orbital Get back two sp hybrid atomic orbitals

Switch our Thinking

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Combine one 2 s and one 2 p atomic orbital Get back two sp hybrid atomic orbitals

Switch our Thinking

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Combine one 2 s and one 2 p atomic orbital Get back two sp hybrid atomic orbitals

Switch our Thinking

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back $\mathbf{n} \underline{\text { hybrid atomic orbitals }}$

Combine one 2 s and one 2 p atomic orbital Get back two sp hybrid atomic orbitals

Switch our Thinking

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back \mathbf{n} hybrid atomic orbitals

Combine one 2 s and two 2 p atomic orbitals
Get back three $s p^{2}$ hybrid atomic orbitals

Switch our Thinking

Hybrid Atomic Orbitals

Move away from thinking of p and s orbitals
We can combine \mathbf{n} atomic orbitals, to get back \mathbf{n} hybrid atomic orbitals

Combine one 2 s and three 2 p atomic orbitals Get back four sp^{3} hybrid atomic orbitals

Fig. 9-5, p. 410

Conservation of energy

The sum of the energies of the starting orbitals must equal the sum of the energies of the resulting orbitals

Each $\mathrm{C}-\mathrm{H}$ bond uses one C atom $s p^{3}$ hybrid orbital and a H atom 1s orbital

Conservation of energy

The sum of the energies of the starting orbitals must equal the sum of the energies of the resulting orbitals

Take home: don't mix more atomic orbitals than you need to

sp^{3} hybridization

[^0]
sp^{3} hybridization

Lewis structure
$\mathrm{C}-\mathrm{H}$ bond is formed from overlap of C atom $s p^{3}$ hybrid

Molecular model

Orbital representation

$0-\mathrm{H}$ bond formed Lone pairs use $s p^{3}$ from 0 atom $s p^{3} \quad$ hybrid orbitals on 0 hybrid orbital and H atom.

Lewis structure

Molecular model

Orbital representation

C-0 bond formed from 0 and $\mathrm{C} p^{3}$ hybrid orbitals. C-H bond formed from C atom $s p^{3}$ hybrid orbital and $\mathrm{H} 1 s$ orbital.

sp² hybridization

[^1]
sp² hybridization

[^2]
sp² hybridization

[^3]Left over (unused) atomic orbital

sp hybridization

[^4]

sp hybridization

[^5]

Fig. 9-9, p. 415

sp hybridization

Left over (unused) atomic orbitals

[^6]
[^0]: (c) Brooks/Cole, Cengage Learning

[^1]: (c) Brooks/Cole, Cengage Learning

[^2]: (c) Brooks/Cole, Cengage Learning

[^3]: (c) Brooks/Cole, Cengage Learning

[^4]: (c) Brooks/Cole, Cengage Learning

[^5]: (c) Brooks/Cole, Cengage Learning

[^6]: © Brooks/Cole, Cengage Learning

