## What is the charge (x) on $AsO_4^{x?}$

- 1) -3
- 2) -2
- 3) -1
- 4) 0
- 5) +1
- 6) +2
- 7) +3



## What is the charge (x) on $AsO_4^{x?}$

























-Ås<sup>+</sup>+O<sup>-</sup>

·0·

1)

2)

3)

Charge on a less electronegative element

















# Double bond requires two sets of overlapping orbitals and two pairs of electrons.

# C=C / Triple bond requires three sets of overlapping orbitals and three pairs of electrons.



sp<sup>2</sup> hybridization



<sup>@</sup> Brooks/Cole, Cengage Learning

sp<sup>2</sup> hybridization



@ Brooks/Cole, Cengage Learning

## sp<sup>2</sup> hybridization



<sup>@</sup> Brooks/Cole, Cengage Learning

#### $\square$ Unhybridized *p* orbital. Used for $\pi$ bonding in C<sub>2</sub>H<sub>4</sub>.

## $\uparrow$ $\uparrow$ $\uparrow$ Three *sp*<sup>2</sup> hybrid orbitals. Used for C—H and C—C $\sigma$ bonding in C<sub>2</sub>H<sub>4</sub>.

Brooks/Cole, Cengage Learning



(a) Lewis structure and bonding of ethylene,  $C_2H_4$ .

@ Brooks/Cole, Cengage Learning



(b) The C—H  $\sigma$  bonds are formed by overlap of C atom  $sp^2$  hybrid orbitals with H atom 1s orbitals. The  $\sigma$  bond between C atoms arises from overlap of  $sp^2$  orbitals.

(c) The carbon-carbon  $\pi$  bond is formed by overlap of an unhybridized 2p orbital on each atom. Note the lack of electron density along the C—C bond axis from this bond.



(a) Lewis structure and bonding of formaldehyde, CH<sub>2</sub>0.

@ Brooks/Cole, Cengage Learning

(b) The C—H  $\sigma$  bonds are formed by overlap of C atom  $sp^2$  hybrid orbitals with H atom 1s orbitals. The  $\sigma$  bond between C and O atoms arises from overlap of  $sp^2$  orbitals. (c) The C $-0 \pi$  bond comes from the sideby-side overlap of *p* orbitals on the two atoms.



## Lewis dot structure

Molecular model

@ Brooks/Cole, Cengage Learning

Example 9-5, p. 419



Acetone

# C=C

Double bond requires two sets of overlapping orbitals and two pairs of electrons.

# C=C / Triple bond requires three sets of overlapping orbitals and three pairs of electrons. P.416

## sp hybridization



@ Brooks/Cole, Cengage Learning

## sp hybridization



@ Brooks/Cole, Cengage Learning

## sp hybridization



@ Brooks/Cole, Cengage Learning

#### $\uparrow$ $\uparrow$ Two unhybridized *p* orbitals. Used for $\pi$ bonding in C<sub>2</sub>H<sub>2</sub>.

 $\uparrow$   $\uparrow$  Two *sp* hybrid orbitals. Used for C—H and C—C  $\sigma$  bonding in C<sub>2</sub>H<sub>2</sub>.

Brooks/Cole, Cengage Learning



© Brooks/Cole, Cengage Learning



# Acetonitrile, CH<sub>3</sub>CN

## **Free Rotation**



(a) In ethane nearly free rotation can occur around the axis of a single  $(\sigma)$  bond.

@ Brooks/Cole, Cengage Learning

# **Restricted Rotation**

## Formation of pi bonds requires good overlap



(a) In ethane nearly free rotation can occur around the axis of a single  $(\sigma)$  bond.



(b) Ethylene rotation is severely restricted around double bonds because doing so would break the  $\pi$  bond, a process generally requiring a great deal of energy.

@ Brooks/Cole, Cengage Learning



(b) Ethylene rotation is severely restricted around double bonds because doing so would break the  $\pi$  bond, a process generally requiring a great deal of energy.

Cole, Cengage Learning

Fig. 9-13, p. 420

# **Restricted Rotation**

#### cis-trans isomers do not interconvert readily



## cis-1,2-dichloroethylene

@ Brooks/Cole, Cengage Learning

## trans-1,2-dichloroethylene

## Benzene

#### Represented by two resonance structures



#### Which centers are sp<sup>2</sup> hybridized?

- 1) 1, 3, and 5
- 2) 2, 4, and 6
- 3) 1, 2, 3, 4, 5, and 6
- 4) None, they are all sp<sup>3</sup>









 $\sigma$  and  $\pi$  bonding in benzene

@ Brooks/Cole, Cengage Learning



 $\sigma$  and  $\pi$  bonding in benzene

@ Brooks/Cole, Cengage Learning



 $\sigma$  and  $\pi$  bonding in benzene

© Brooks/Cole, Cengage Learning