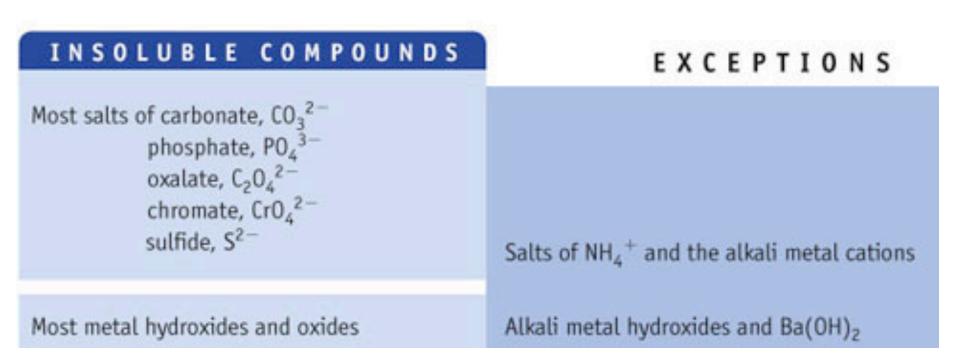

SOLUBLE COMPOUNDS Almost all salts of Na ⁺ , K ⁺ , NH ₄ ⁺ Salts of nitrate, NO ₃ ⁻ chlorate, ClO ₃ ⁻ perchlorate, ClO ₄ ⁻ acetate, CH ₃ CO ₂ ⁻	
	EXCEPTIONS
Almost all salts of Cl ⁻ , Br ⁻ , I ⁻	Halides of Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺
Salts containing F ⁻	Fluorides of Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺
Salts of sulfate, S042-	Sulfates of Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺
INSOLUBLE COMPOUNDS	EXCEPTIONS
Most salts of carbonate, CO ₃ ²⁻ phosphate, PO ₄ ³⁻ oxalate, C ₂ O ₄ ²⁻ chromate, CrO ₄ ²⁻ sulfide, S ²⁻	Salts of $\rm NH_4^+$ and the alkali metal cations
Most metal hydroxides and oxides	Alkali metal hydroxides and Ba(OH) ₂

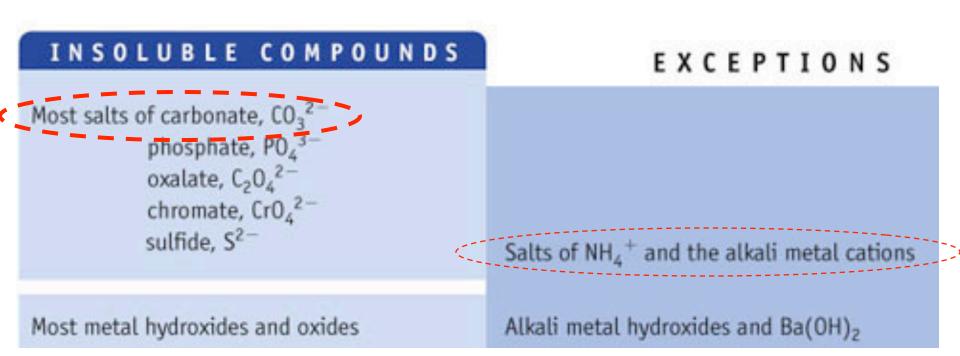
Fig. 3-10, p. 126

SOLUBLE COMPOUNDS	
Almost all salts of Na $^{\rm +}$, K $^{\rm +}$, NH $_{\rm 4}^{\rm +}$	
Salts of nitrate, NO ₃ chlorate, ClO ₃ perchlorate, ClO ₄ acetate, CH ₃ CO ₂	EXCEPTIONS
Almost all salts of Cl ⁻ , Br ⁻ , I ⁻	Halides of Ag ⁺ , Hg ₂ ²⁺ , Pb ²⁺
Salts containing F	Fluorides of Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺
Salts of sulfate, SO42-	Sulfates of Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺

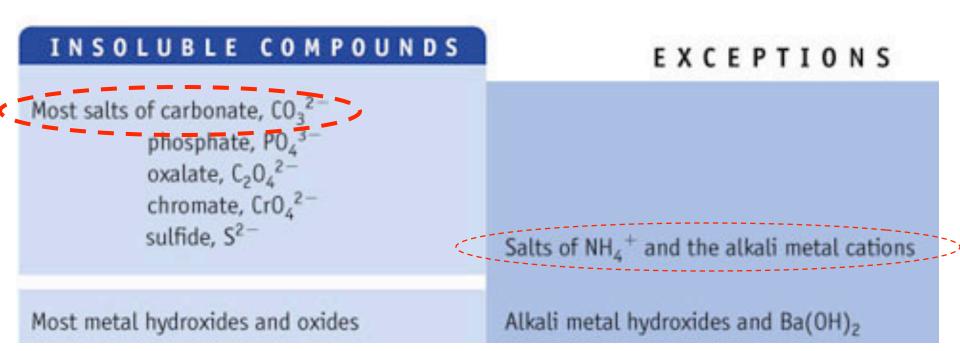
Fig. 3-10, p. 126

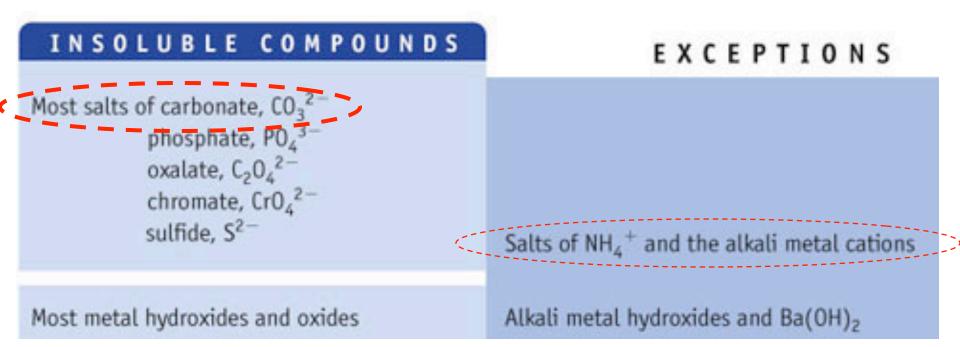


EXCEPTIONS


Fig. 3-10, p. 126

Mix $CaCl_2$ and Na_2CO_3 in water – what happens?


Mix $CaCl_2$ and Na_2CO_3 in water – what happens?


Mix $CaCl_2$ and Na_2CO_3 in water – what happens?

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq)$

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq)$

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq)$

 $CaCO_3$ (s)

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2Na^{+}(aq) + CO_{3}^{2-}(aq)$

 $2CI^{-}(aq) + 2Na^{+}(aq) + CaCO_{3}(s)$

Mix $CaCl_2$ and Na_2CO_3 in water – what happens? soluble soluble

 $\begin{array}{ccc} Ca^{2+} (aq) + 2CI^{-} (aq) & \longrightarrow & 2CI^{-} (aq) + 2Na^{+} (aq) \\ & + 2Na^{+} (aq) + CO_{3}^{2-} (aq) & \longrightarrow & + CaCO_{3} (s) \end{array}$

Mix $CaCl_2$ and Na_2CO_3 in water – what happens? soluble soluble

$$Ca^{2+} (aq) + 2CI^{-} (aq) \longrightarrow 2CI^{-} (aq) + 2Na^{+} (aq) + 2Na^{+} (aq) \longrightarrow + CaCO_{3} (s)$$

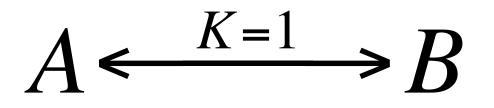
$$Ca^{2+}(aq) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$$

$$\begin{array}{rcl} Ca^{2+} (aq) + 2CI^{-} (aq) & \longrightarrow & 2CI^{-} (aq) + 2Na^{+} (aq) \\ & + 2Na^{+} (aq) + CO_{3}^{2-} (aq) & \longrightarrow & + CaCO_{3} (s) \end{array}$$

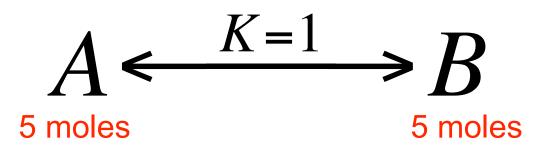
Net Ionic Equation

 $Ca^{2+}(aq) + CO_3^{2-}(aq) \longrightarrow CaCO_3(s)$

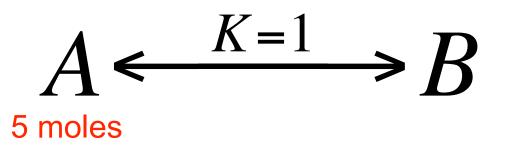
Equilibria $A \xleftarrow{K=1} B$


10 moles of A are added to a beaker. At equilibrium, how many moles of B are in the beaker?

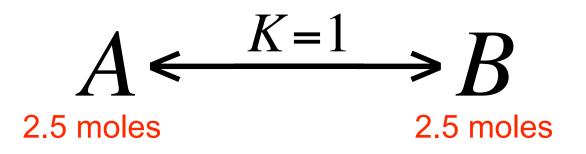
$A \xleftarrow{K=1} B$


10 moles of A are added to a beaker. At equilibrium, how many moles of B are in the beaker?

 $K = 1 = \frac{\lfloor B \rfloor}{-}$ [B] = [A]|A|5 moles 5 moles



10 moles of A are added to a beaker. After equilibration, all of B is instantaneously removed from the beaker.



10 moles of A are added to a beaker. After equilibration, all of B is instantaneously removed from the beaker.

10 moles of A are added to a beaker. After equilibration, all of B is instantaneously removed from the beaker.

10 moles of A are added to a beaker. After equilibration, all of B is instantaneously removed from the beaker.

Le Chatelier's principle

If the conditions of a system at equilibrium are changed, the system moves in such a way as to oppose the effects of that change.

 $a + b \xleftarrow{\kappa} c + d$

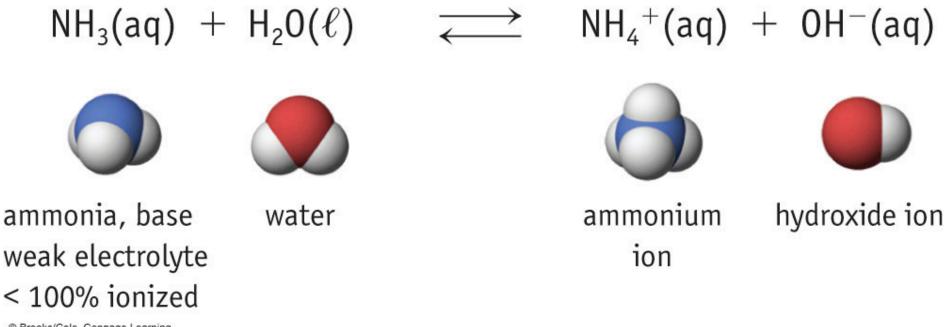
TABLE 3.2 Common Acids and Bases

LiOH	
LIGHT	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
Ba(OH) ₂	Barium hydroxide
Weak Base	(Weak Electrolyte)
NH ₃	Ammonia
	KOH Ba(OH)₂ Weak Base

* These are representative of hundreds of weak acids.

LiOH	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
$Ba(OH)_2$	Barium hydroxide

LiOH	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
Ba(OH) ₂	Barium hydroxide


NH₃ is also a base(!)

LiOH	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
Ba(OH) ₂	Barium hydroxide

NH₃ is also a base(!)

LiOH	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
$Ba(OH)_2$	Barium hydroxide

NH₃ is also a base(!)

TABLE 3.2 Common Acids and Bases

LiOH	
LIGHT	Lithium hydroxide
NaOH	Sodium hydroxide
кон	Potassium hydroxide
Ba(OH) ₂	Barium hydroxide
Weak Base	(Weak Electrolyte)
NH ₃	Ammonia
	KOH Ba(OH)₂ Weak Base

* These are representative of hundreds of weak acids.

TABLE 3.2 Common Acids and Bases

Strong Acid	ls (Strong Electrolytes)	Soluble	e Strong Bases
HCl (aq)	Hydrochloric acid	LiOH	Lithium hydroxide
HBr (aq)	Hydrobromic acid	NaOH	Sodium hydroxide
HI (aq)	Hydroiodic acid	КОН	Potassium hydroxide
HNO ₃	Nitric acid	Ba(OH)	2 Barium hydroxide
HClO ₄	Perchloric acid		
H_2SO_4	Culturia anid		
112504	Sulfuric acid		
	(Weak Electrolytes)*	Wook Asida (Week Electrolytee)
Weak Acids		Weak Acids (Weak Electrolytes)
Weak Acids	(Weak Electrolytes)*		
Weak Acids H ₃ PO ₄ H ₂ CO ₃	(Weak Electrolytes)* Phosphoric acid	Weak Acids (H ₃ PO ₄	Weak Electrolytes) Phosphoric acid
Weak Acids H ₃ PO ₄ H ₂ CO ₃ CH ₃ CO ₂ H	(Weak Electrolytes) * Phosphoric acid Carbonic acid	H ₃ PO ₄	
Weak Acids H ₃ PO ₄ H ₂ CO ₃ CH ₃ CO ₂ H H ₂ C ₂ O ₄	(Weak Electrolytes)* Phosphoric acid Carbonic acid Acetic acid		Phosphoric acid
	(Weak Electrolytes)* Phosphoric acid Carbonic acid Acetic acid Oxalic acid	H ₃ PO ₄	Phosphoric acid

* These are representative of hundreds of weak acids.

Mix $CaCl_2$ and H_2CO_3 in water – what happens?

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2H^{+}(aq) + CO_{3}^{2-}(aq)$

Mix CaCl₂ and H₂CO₃ in water – what happens? soluble weakly soluble

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2H^{+}(aq) + CO_{3}^{2-}(aq)$

Weak Acids (Weak Electrolytes)	
H ₃ PO ₄	Phosphoric acid
H ₂ CO ₃	Carbonic acid

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2H^{+}(aq) + CO_{3}^{2-}(aq)$

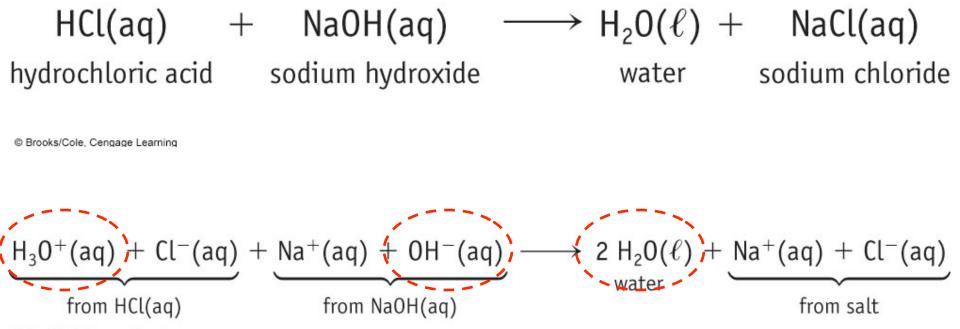
 $2CI^{-}(aq) + 2H^{+}(aq) + CaCO_{3}(s)$

Weak Acids (Weak Electrolytes)	
H ₃ PO ₄	Phosphoric acid
H ₂ CO ₃	Carbonic acid

 $Ca^{2+}(aq) + 2CI^{-}(aq) + 2H^{+}(aq) + CO_{3}^{2-}(aq)$

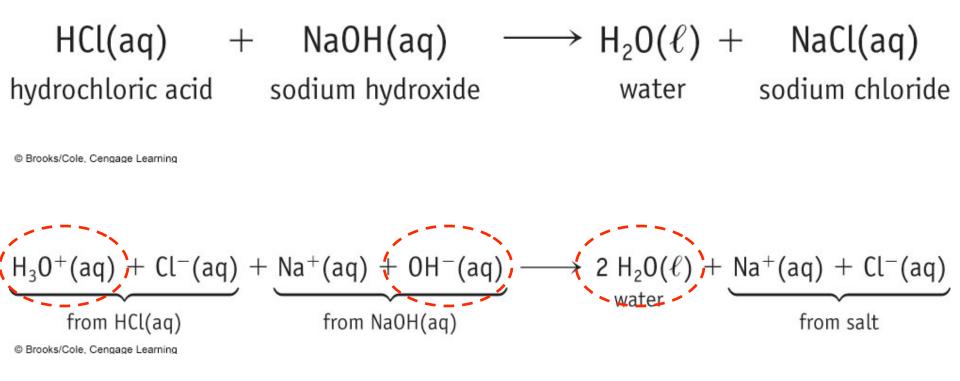
 $2CI^{-}(aq) + 2H^{+}(aq) + CaCO_{3}(s)$

Precipitation drives this rxn forward

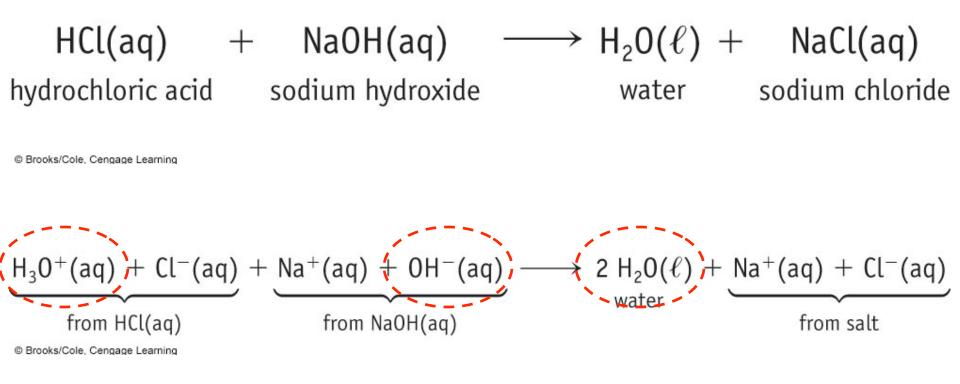

Weak Acids (Weak Electrolytes)	
H ₃ PO ₄	Phosphoric acid
H ₂ CO ₃	Carbonic acid

Acid-Base Chemistry

 $\begin{array}{ll} \mathsf{HCl}(\mathsf{aq}) & + & \mathsf{NaOH}(\mathsf{aq}) & \longrightarrow \mathsf{H}_2\mathsf{O}(\ell) + & \mathsf{NaCl}(\mathsf{aq}) \\ \mathsf{hydrochloric\ acid} & \mathsf{sodium\ hydroxide} & \mathsf{water} & \mathsf{sodium\ chloride} \\ \\ \ensuremath{^{\circ}\mathsf{Brooks/Cole,\ Cengage\ Learning}} \\ \underbrace{\mathsf{H}_3\mathsf{O}^+(\mathsf{aq}) + \mathsf{Cl}^-(\mathsf{aq})}_{from\ \mathsf{HCl}(\mathsf{aq})} + \underbrace{\mathsf{Na}^+(\mathsf{aq}) + \mathsf{OH}^-(\mathsf{aq})}_{from\ \mathsf{NaOH}(\mathsf{aq})} \longrightarrow 2 \underset{\mathsf{water}}{\mathsf{H}_2\mathsf{O}(\ell)} + \underbrace{\mathsf{Na}^+(\mathsf{aq}) + \mathsf{Cl}^-(\mathsf{aq})}_{from\ \mathsf{salt}} \end{array}$


@ Brooks/Cole, Cengage Learning

Acid-Base Chemistry


@ Brooks/Cole, Cengage Learning

Acid-Base Chemistry

Net Ionic Equation $H_3O^+(aq) + OH^-(aq) \longrightarrow 2 H_2O(I)$

Acid-Base Chemistry

Net Ionic Equation $H_3O^+(aq) + OH^-(aq) \longrightarrow 2 H_2O(I)$

Acid-base reactions can *drive* reactions forward

Metal carbonate or bicarbonate + acid \rightarrow metal salt + CO₂(g) + H₂O(ℓ) Na₂CO₃(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO₂(g) + H₂O(ℓ)

Metal carbonate or bicarbonate + acid \rightarrow metal salt + CO₂(g) + H₂O(ℓ) Na₂CO₃(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO₂(g) + H₂O(ℓ)

 $2Na^{+}(aq) + 2CI^{-}(aq) + 2H^{+}(aq) + CO_{3}^{2-}(aq)$

2Na⁺ (aq) + 2Cl⁻ (aq) + 2H⁺ (aq) + CO₃²⁻ (aq) 2H⁺ (aq) + CO₃²⁻ (aq) → H₂O (I) + CO₂ (g)

Assumes a container open to the environment

Table 3-3, p. 140

Assumes a container open to the environment What if we put this in a sealed container?

Assumes a container open to the environment What if we put this in a sealed container? What's a good example of this?

TABLE 3.3 Gas-Forming ReactionsMetal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$

 $Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$

Assumes a container open to the environment What if we put this in a sealed container? What's a good example of this?

Gas evolution can *drive* reactions forward

Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$

 $Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$

 $NaHCO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(\ell)$

Metal sulfide + acid \rightarrow metal salt + H₂S(g)

 $Na_2S(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H_2S(g)$

Metal sulfite + acid \rightarrow metal salt + SO₂(g) + H₂O(ℓ)

 $Na_2SO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + SO_2(g) + H_2O(\ell)$

Ammonium salt + strong base \rightarrow metal salt + NH₃(g) + H₂O(ℓ)

 $NH_4Cl(aq) + NaOH(aq) \rightarrow NaCl(aq) + NH_3(g) + H_2O(\ell)$

[@] Brooks/Cole, Cengage Learning

Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$

 $Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$

 $NaHCO_3(aq) + HCl(aq) \rightarrow NaCl(aq) + CO_2(g) + H_2O(\ell)$

Metal sulfide + acid \rightarrow metal salt + H₂S(g)

 $Na_2S(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + H_2S(g)$

Metal sulfite + acid \rightarrow metal salt + SO₂(g) + H₂O(ℓ)

 $Na_2SO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + SO_2(g) + H_2O(\ell)$

Ammonium salt + strong base \rightarrow metal salt + NH₃(g) + H₂O(ℓ)

 $NH_4Cl(aq) + NaOH(aq) \rightarrow NaCl(aq) + NH_3(g) + H_2O(\ell)$

Brooks/Cole, Cengage Learning

Gas evolution can drive reactions forward

$\begin{array}{rll} H_2C_4H_4O_6(aq) & + & HCO_3^{-}(aq) & \longrightarrow & HC_4H_4O_6^{-}(aq) & + & H_2O(\ell) + & CO_2(g) \\ \\ & \mbox{tartaric acid} & & \mbox{hydrogen carbonate ion} & & \mbox{hydrogen tartrate ion} \end{array}$

@ Brooks/Cole, Cengage Learning

 $\begin{array}{rll} H_2C_4H_4O_6(aq) & + & HCO_3^{-}(aq) & \longrightarrow & HC_4H_4O_6^{-}(aq) & + & H_2O(\ell) + & CO_2(g) \\ \\ & \mbox{tartaric acid} & & \mbox{hydrogen carbonate ion} & & \mbox{hydrogen tartrate ion} \end{array}$

Brooks/Cole, Cengage Learning

Gas evolution AND acid base reaction *drive* this reaction forward