Le Chatelier's principle

If the conditions of a system at equilibrium are changed, the system moves in such a way as to oppose the effects of that change.

$$a + b \stackrel{K}{\longleftrightarrow} c + d$$

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

$$Ca^{2+}$$
 (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + CaCO₃ (s)

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

$$Ca^{2+}$$
 (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + CaCO₃ (s)

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

$$Ca^{2+}$$
 (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + 2Na⁺ (aq) + CaCO₃ (s)

Net Ionic Equation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s)

Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble

$$Ca^{2+}$$
 (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + 2Na⁺ (aq) + CaCO₃ (s)

Precipitation drives this rxn forward

Net Ionic Equation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$

hydrochloric acid sodium hydroxide water sodium chloride

@ Brooks/Cole, Cengage Learning

$$\underbrace{H_3O^+(aq) + Cl^-(aq)}_{\text{from HCl(aq)}} + \underbrace{Na^+(aq) + OH^-(aq)}_{\text{from NaOH(aq)}} \longrightarrow 2 H_2O(\ell) + \underbrace{Na^+(aq) + Cl^-(aq)}_{\text{water}} + \underbrace{Na^+(aq) + Cl^-(aq)}_{\text{from salt}}$$

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$

hydrochloric acid sodium hydroxide water sodium chloride

@ Brooks/Cole, Cengage Learning

$$H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq)$$
 \longrightarrow
 $2 H_2O(\ell) + Na^+(aq) + Cl^-(aq)$
from HCl(aq)
from NaOH(aq)
from Salt

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$

hydrochloric acid sodium hydroxide water sodium chloride

@ Brooks/Cole, Cengage Learning

© Brooks/Cole, Cengage Learning

Net Ionic Equation

$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$

hydrochloric acid sodium hydroxide water sodium chloride

@ Brooks/Cole, Cengage Learning

$$H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq) \longrightarrow 2 H_2O(\ell) + Na^+(aq) + Cl^-(aq)$$
from HCl(aq)
from NaOH(aq)

from Salt

Net Ionic Equation

$$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$

Acid-base reactions can drive reactions forward

$$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$

hydrochloric acid sodium hydroxide water sodium chloride

@ Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

Acid-base neutralization drives this rxn forward

Net Ionic Equation

$$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$

Acid-base reactions can drive reactions forward

Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$

$$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$

$$2Na^{+}$$
 (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq)
 $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq)

Metal carbonate or bicarbonate + acid
$$\rightarrow$$
 metal salt + $CO_2(g)$ + $H_2O(\ell)$

$$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$

$$2Na^{+}$$
 (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq)
 $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq)

Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$

$$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$

$$2Na^{+}$$
 (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq)
 $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq)

$$2H^{+}$$
 (aq) + CO_{3}^{2-} (aq)
 \rightarrow H^{+} (aq) + OH^{-} (aq) + CO_{2} (aq) \rightarrow $H_{2}O$ (I) + CO_{2} (g)

Metal carbonate or bicarbonate + acid
$$\rightarrow$$
 metal salt + $CO_2(g)$ + $H_2O(\ell)$

$$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$

$$2Na^{+}$$
 (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq)
 $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq)

$$2H^{+}$$
 (aq) + CO_{3}^{2-} (aq)
 \rightarrow H^{+} (aq) + OH^{-} (aq) + CO_{2} (aq) \rightarrow $H_{2}O$ (I) + CO_{2} (g)

Acid-base neutralization and gas evolution drive this rxn forward

Oxidation-Reduction

 $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$

0₂ is the oxidizing agent

 $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$

0₂ is the oxidizing agent

 $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$ $0 \qquad \uparrow 0$

0₂ is the oxidizing agent

$$2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$$

$$0 \uparrow 0 +2$$

0₂ is the oxidizing agent

0₂ is the oxidizing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²−, oxide ion or O combined in H₂O	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
HNO₃, nitric acid	Nitrogen oxides* such as NO and NO ₂	C, carbon (used to reduce metal oxides)	CO and CO ₂
Cr ₂ O ₇ ²⁻ , dichromate ion	Cr ³⁺ , chromium(III) ion (in acid solution)		
Mn0 ₄ ⁻ , permanganate ion	Mn ²⁺ , manganese(II) ion (in acid solution)		

^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid.

[@] Brooks/Cole, Cengage Learning

TABLE 3.4 Common Oxidizing and Reducing Agents

want to steal e Oxidizing Agent	electrons Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
HNO₃, nitric acid	Nitrogen oxides* such as NO and NO ₂	C, carbon (used to reduce metal oxides)	CO and CO ₂
Cr ₂ O ₇ ²⁻ , dichromate ion	Cr ³⁺ , chromium(III) ion (in acid solution)		
Mn0 ₄ ⁻ , permanganate ion	Mn ²⁺ , manganese(II) ion (in acid solution)		

^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid.

[@] Brooks/Cole, Cengage Learning

TABLE 3.4 Common Oxidizing and Reducing Agents

want to steal e Oxidizing Agent	lectrons Reaction Product	readily give up e Reducing Agent	ectrons Reaction Product
0 ₂ , oxygen	0²-, oxide ion or O combined in H₂O	H ₂ , hydrogen	H+(aq), hydrogen ion or H com- bined in H₂O or other molecule
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
HNO₃, nitric acid	Nitrogen oxides* such as NO and NO ₂	C, carbon (used to reduce metal oxides)	CO and CO ₂
Cr ₂ O ₇ ²⁻ , dichromate ion	Cr ³⁺ , chromium(III) ion (in acid solution)		
Mn0 ₄ ⁻ , permanganate ion	Mn ²⁺ , manganese(II) ion (in acid solution)		

^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid.

[@] Brooks/Cole, Cengage Learning

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule

Oxidizing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule

Oxidizing agent

Gets reduced

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H com- bined in H ₂ O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Oxidizing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Oxidizing agent

Reducing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Reducing agent

Gets oxidized

Oxidizing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Reducing agent

Gets oxidized

At the expense of the other

Oxidizing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing agent

Gets reduced

At the expense of the other

Reducing agent

Gets oxidized

At the expense of the other

Oxidizing agent

Reducing agent

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0²-, oxide ion or 0 combined in H₂0	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H com- bined in H₂O or other molecule

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
0 ₂ , oxygen	0^{2-} , oxide ion or 0 combined in H_2O	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
O ₂ , oxygen	0^{2-} , oxide ion or 0 combined in H_2O	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule
		•	

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
O ₂ , oxygen	0^{2-} , oxide ion or 0 combined in H_2O	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule
0	_2	n	±1

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
O ₂ , oxygen	0^{2-} , oxide ion or 0 combined in H_2O	H ₂ , hydrogen	H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule
0	-2	0	+1

Need 2 H per O

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M^{n+} , metal ions such as Na^{+} , K^{+} , Fe^{2+} or Fe^{3+} , and Al^{3+}

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
Halogen,	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as	M ⁿ⁺ , metal ions such as Na ⁺ ,
F ₂ , Cl ₂ , Br ₂ , or I ₂		Na, K, Fe, and Al	K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
Halogen,	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as	M ⁿ⁺ , metal ions such as Na ⁺ ,
F ₂ , Cl ₂ , Br ₂ , or I ₂		Na, K, Fe, and Al	K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺

0 -1

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
0	-1	0	

Oxidizing Agent	Reaction Product	Reducing Agent	Reaction Product
Halogen, F ₂ , Cl ₂ , Br ₂ , or I ₂	Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻	M, metals such as Na, K, Fe, and Al	M ⁿ⁺ , metal ions such as Na ⁺ , K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺
0	-1	0	+n

Oxidation number of Cu changes from 0 to ± 2 . Cu is oxidized to Cu²⁺ and is the reducing agent.

Cu(s) +
$$2 \text{ NO}_3^-(aq) + 4 \text{ H}_30^+(aq) \longrightarrow \text{Cu}^{2+}(aq) + 2 \text{ NO}_2(g) + 6 \text{ H}_20(\ell)$$

N in NO_3^- changes from +5 to +4 in NO_2 . NO_3^- is reduced to NO_2 and is the oxidizing agent.

@ Brooks/Cole, Cengage Learning

TABLE 3.5 Recognizing Oxidation-Reduction Reactions

	Oxidation	Reduction
In terms of oxidation number	Increase in oxidation number of an atom	Decrease in oxidation number of an atom
In terms of electrons	Loss of electrons by an atom	Gain of electrons by an atom
In terms of oxygen	Gain of one or more O atoms	Loss of one or more O atoms

[@] Brooks/Cole, Cengage Learning

TABLE 3.5 Recognizing Oxidation-Reduction Reactions

	Oxidation	Reduction
In terms of oxidation number	Increase in oxidation number of an atom	Decrease in oxidation number of an atom
In terms of electrons	Loss of electrons by an atom	Gain of electrons by an atom
In terms of oxygen	Gain of one or more O atoms	Loss of one or more O atoms

[@] Brooks/Cole, Cengage Learning

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s)

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s)

Net Ionic Equation

Precipitation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

$$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$

Net Ionic Equation

Precipitation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

Acid-Base
$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

Net Ionic Equation

Precipitation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

Acid-Base
$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

Net Ionic Equation

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

Acid-Base
$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

0 0

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

$$\longrightarrow$$
 CaCO₃ (s)

$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

Acid-Base
$$\longrightarrow$$
 2 H₂O (I)

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s)

Acid-Base
$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

$$2 \text{ Mg (s)} + O_2 \text{ (g)} \longrightarrow 2 \text{ MgO (s)}$$

$$0 +2 -2$$

$$Ca^{2+}$$
 (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s)

Acid-Base
$$H_3O^+$$
 (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)

Oxidation-Reduction

2 Mg (s) +
$$O_2$$
 (g) \longrightarrow 2 MgO (s)

+2 -2

(1) (2) Cu (s) + 2 AgNO₃ (aq)
$$\rightarrow$$
 Cu(NO₃)₂ (aq) + 2 Ag (s)

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s)

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s)

is oxidized (reducing agent)

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s)

is oxidized (reducing agent)

is reduced (oxidizing agent)

$$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$

Cu (s) + 2 AgNO₃ (aq)
$$\rightarrow$$
 Cu(NO₃)₂ (aq) + 2 Ag (s)

(1) (2) Cu (s) + 2 AgNO₃ (aq)
$$\rightarrow$$
 Cu(NO₃)₂ (aq) + 2 Ag (s)

Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s)
0 +1 -1 +2 -1 0

is oxidized (reducing agent)

spectator

is reduced (oxidizing agent)

(1) (2) Cu (s) + 2 AgNO₃ (aq)
$$\rightarrow$$
 Cu(NO₃)₂ (aq) + 2 Ag (s)

Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq)
$$\rightarrow$$
 Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s)
0 +1 -1 +2 -1 0

is reduced (oxidizing agent)

spectator

is oxidized (reducing agent)

Fig. 3-21, p. 148

Exercise 3-13, p. 148

Which is the oxidizing agent?

(1)

(2)

(3)

$$3 \text{ CH}_3 \text{CH}_2 \text{OH(aq)} + 2 \text{ Cr}_2 \text{O}_7^{2-} \text{(aq)} + 16 \text{ H}_3 \text{O}^+ \text{(aq)}$$
 ethanol dichromate ion; orange-red

$$3 \text{ CH}_3\text{CO}_2\text{H(aq)} + 4 \text{ Cr}^{3+}(\text{aq}) + 27 \text{ H}_2\text{O}(\ell)$$

acetic acid chromium(III)
ion; green

Fig. 3-21, p. 148

Exercise 3-13, p. 148

Which is the oxidizing agent?

(1)

(2)

(3)

$$3 \text{ CH}_3\text{CO}_2\text{H(aq)} + 4 \text{ Cr}^{3+}(\text{aq}) + 27 \text{ H}_2\text{O}(\ell)$$

acetic acid chromium(III)
ion; green