Le Chatelier's principle If the conditions of a system at equilibrium are changed, the system moves in such a way as to oppose the effects of that change. $$a + b \stackrel{K}{\longleftrightarrow} c + d$$ Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble $$Ca^{2+}$$ (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + CaCO₃ (s) Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble $$Ca^{2+}$$ (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + CaCO₃ (s) $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble $$Ca^{2+}$$ (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + 2Na⁺ (aq) + CaCO₃ (s) ## **Net** Ionic Equation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s) Mix CaCl₂ and Na₂CO₃ in water – what happens? soluble soluble $$Ca^{2+}$$ (aq) + 2Cl⁻ (aq) \longrightarrow 2Cl⁻ (aq) + 2Na⁺ (aq) + 2Na⁺ (aq) + CaCO₃ (s) Precipitation drives this rxn forward ## **Net** Ionic Equation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) $$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$ hydrochloric acid sodium hydroxide water sodium chloride @ Brooks/Cole, Cengage Learning $$\underbrace{H_3O^+(aq) + Cl^-(aq)}_{\text{from HCl(aq)}} + \underbrace{Na^+(aq) + OH^-(aq)}_{\text{from NaOH(aq)}} \longrightarrow 2 H_2O(\ell) + \underbrace{Na^+(aq) + Cl^-(aq)}_{\text{water}} + \underbrace{Na^+(aq) + Cl^-(aq)}_{\text{from salt}}$$ $$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$ hydrochloric acid sodium hydroxide water sodium chloride @ Brooks/Cole, Cengage Learning $$H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq)$$ \longrightarrow $2 H_2O(\ell) + Na^+(aq) + Cl^-(aq)$ from HCl(aq) from NaOH(aq) from Salt $$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$ hydrochloric acid sodium hydroxide water sodium chloride @ Brooks/Cole, Cengage Learning © Brooks/Cole, Cengage Learning ## **Net Ionic Equation** $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) $$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$ hydrochloric acid sodium hydroxide water sodium chloride @ Brooks/Cole, Cengage Learning $$H_3O^+(aq) + Cl^-(aq) + Na^+(aq) + OH^-(aq) \longrightarrow 2 H_2O(\ell) + Na^+(aq) + Cl^-(aq)$$ from HCl(aq) from NaOH(aq) from Salt ## **Net Ionic Equation** $$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$ Acid-base reactions can drive reactions forward $$HCl(aq) + NaOH(aq) \longrightarrow H_2O(\ell) + NaCl(aq)$$ hydrochloric acid sodium hydroxide water sodium chloride @ Brooks/Cole, Cengage Learning @ Brooks/Cole, Cengage Learning Acid-base neutralization drives this rxn forward ## **Net Ionic Equation** $$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$ Acid-base reactions can drive reactions forward Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$ $$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$ $$2Na^{+}$$ (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq) $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq) Metal carbonate or bicarbonate + acid $$\rightarrow$$ metal salt + $CO_2(g)$ + $H_2O(\ell)$ $$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$ $$2Na^{+}$$ (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq) $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq) Metal carbonate or bicarbonate + acid \rightarrow metal salt + $CO_2(g)$ + $H_2O(\ell)$ $$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$ $$2Na^{+}$$ (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq) $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq) $$2H^{+}$$ (aq) + CO_{3}^{2-} (aq) \rightarrow H^{+} (aq) + OH^{-} (aq) + CO_{2} (aq) \rightarrow $H_{2}O$ (I) + CO_{2} (g) Metal carbonate or bicarbonate + acid $$\rightarrow$$ metal salt + $CO_2(g)$ + $H_2O(\ell)$ $$Na_2CO_3(aq) + 2 HCl(aq) \rightarrow 2 NaCl(aq) + CO_2(g) + H_2O(\ell)$$ $$2Na^{+}$$ (aq) + $2CI^{-}$ (aq) + $2H^{+}$ (aq) + CO_{3}^{2-} (aq) $\rightarrow H_{2}O(I) + CO_{2}(g) + 2Na^{+}$ (aq) + $2CI^{-}$ (aq) $$2H^{+}$$ (aq) + CO_{3}^{2-} (aq) \rightarrow H^{+} (aq) + OH^{-} (aq) + CO_{2} (aq) \rightarrow $H_{2}O$ (I) + CO_{2} (g) Acid-base neutralization and gas evolution drive this rxn forward ## Oxidation-Reduction $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$ 0₂ is the oxidizing agent $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$ 0₂ is the oxidizing agent $2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$ $0 \qquad \uparrow 0$ 0₂ is the oxidizing agent $$2 \text{ Mg(s)} + 0_2(g) \longrightarrow 2 \text{ Mg0(s)}$$ $$0 \uparrow 0 +2$$ 0₂ is the oxidizing agent 0₂ is the oxidizing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|--|---|--| | 0 ₂ , oxygen | 0²−, oxide ion or
O combined in H₂O | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M ⁿ⁺ , metal ions such as Na ⁺ ,
K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | HNO₃, nitric acid | Nitrogen oxides* such as NO and NO ₂ | C, carbon (used to reduce metal oxides) | CO and CO ₂ | | Cr ₂ O ₇ ²⁻ ,
dichromate ion | Cr ³⁺ , chromium(III) ion (in acid solution) | | | | Mn0 ₄ ⁻ ,
permanganate ion | Mn ²⁺ , manganese(II) ion (in acid solution) | | | ^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid. [@] Brooks/Cole, Cengage Learning **TABLE 3.4** Common Oxidizing and Reducing Agents | want to steal e
Oxidizing Agent | electrons
Reaction Product | Reducing Agent | Reaction Product | |--|--|---|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M ⁿ⁺ , metal ions such as Na ⁺ ,
K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | HNO₃, nitric acid | Nitrogen oxides* such as NO and NO ₂ | C, carbon (used to reduce metal oxides) | CO and CO ₂ | | Cr ₂ O ₇ ²⁻ ,
dichromate ion | Cr ³⁺ , chromium(III) ion (in acid solution) | | | | Mn0 ₄ ⁻ ,
permanganate ion | Mn ²⁺ , manganese(II) ion (in acid solution) | | | ^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid. [@] Brooks/Cole, Cengage Learning **TABLE 3.4** Common Oxidizing and Reducing Agents | want to steal e
Oxidizing Agent | lectrons
Reaction Product | readily give up e
Reducing Agent | ectrons
Reaction Product | |--|--|---|--| | 0 ₂ , oxygen | 0²-, oxide ion or
O combined in H₂O | H ₂ , hydrogen | H+(aq), hydrogen ion or H com-
bined in H₂O or other molecule | | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M ⁿ⁺ , metal ions such as Na ⁺ ,
K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | HNO₃, nitric acid | Nitrogen oxides* such as NO and NO ₂ | C, carbon (used to reduce metal oxides) | CO and CO ₂ | | Cr ₂ O ₇ ²⁻ ,
dichromate ion | Cr ³⁺ , chromium(III) ion (in acid solution) | | | | Mn0 ₄ ⁻ ,
permanganate ion | Mn ²⁺ , manganese(II) ion (in acid solution) | | | ^{*} NO is produced with dilute HNO3, whereas NO2 is a product of concentrated acid. [@] Brooks/Cole, Cengage Learning | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|---| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule | ## Oxidizing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|---| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule | Oxidizing agent Gets reduced | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H com-
bined in H ₂ O or other molecule | ### Oxidizing agent Gets reduced At the expense of the other | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|---| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H ₂ O or other molecule | Oxidizing agent Gets reduced At the expense of the other Oxidizing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | Oxidizing agent Gets reduced At the expense of the other Oxidizing agent Reducing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | Oxidizing agent Gets reduced At the expense of the other Reducing agent Gets oxidized Oxidizing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | Oxidizing agent Gets reduced At the expense of the other Reducing agent Gets oxidized At the expense of the other Oxidizing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | Oxidizing agent Gets reduced At the expense of the other Reducing agent Gets oxidized At the expense of the other Oxidizing agent Reducing agent | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|---| | 0 ₂ , oxygen | 0²-, oxide ion or
0 combined in H₂0 | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H com-
bined in H₂O or other molecule | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | 0 ₂ , oxygen | 0^{2-} , oxide ion or 0 combined in H_2O | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | O ₂ , oxygen | 0^{2-} , oxide ion or 0 combined in H_2O | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | | | • | | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | O ₂ , oxygen | 0^{2-} , oxide ion or 0 combined in H_2O | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | 0 | _2 | n | ±1 | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |-------------------------|--|---------------------------|--| | O ₂ , oxygen | 0^{2-} , oxide ion or 0 combined in H_2O | H ₂ , hydrogen | H ⁺ (aq), hydrogen ion or H combined in H₂O or other molecule | | 0 | -2 | 0 | +1 | Need 2 H per O | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|--|--|---| | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M^{n+} , metal ions such as Na^{+} , K^{+} , Fe^{2+} or Fe^{3+} , and Al^{3+} | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|--|-------------------|--| | Halogen, | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as | M ⁿ⁺ , metal ions such as Na ⁺ , | | F ₂ , Cl ₂ , Br ₂ , or I ₂ | | Na, K, Fe, and Al | K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|--|-------------------|--| | Halogen, | Halide ion, F ⁻ , Cl ⁻ , Br ⁻ , or I ⁻ | M, metals such as | M ⁿ⁺ , metal ions such as Na ⁺ , | | F ₂ , Cl ₂ , Br ₂ , or I ₂ | | Na, K, Fe, and Al | K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | 0 -1 | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|---|--|--| | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ ,
Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M ⁿ⁺ , metal ions such as Na ⁺ ,
K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | 0 | -1 | 0 | | | Oxidizing Agent | Reaction Product | Reducing Agent | Reaction Product | |--|---|--|--| | Halogen,
F ₂ , Cl ₂ , Br ₂ , or I ₂ | Halide ion, F ⁻ , Cl ⁻ ,
Br ⁻ , or I ⁻ | M, metals such as
Na, K, Fe, and Al | M ⁿ⁺ , metal ions such as Na ⁺ ,
K ⁺ , Fe ²⁺ or Fe ³⁺ , and Al ³⁺ | | 0 | -1 | 0 | +n | Oxidation number of Cu changes from 0 to ± 2 . Cu is oxidized to Cu²⁺ and is the reducing agent. Cu(s) + $$2 \text{ NO}_3^-(aq) + 4 \text{ H}_30^+(aq) \longrightarrow \text{Cu}^{2+}(aq) + 2 \text{ NO}_2(g) + 6 \text{ H}_20(\ell)$$ N in NO_3^- changes from +5 to +4 in NO_2 . NO_3^- is reduced to NO_2 and is the oxidizing agent. @ Brooks/Cole, Cengage Learning ### **TABLE 3.5** Recognizing Oxidation-Reduction Reactions | | Oxidation | Reduction | |------------------------------|---|---| | In terms of oxidation number | Increase in oxidation number of an atom | Decrease in oxidation number of an atom | | In terms of electrons | Loss of electrons by an atom | Gain of electrons by an atom | | In terms of oxygen | Gain of one or more O atoms | Loss of one or more O atoms | [@] Brooks/Cole, Cengage Learning ### **TABLE 3.5** Recognizing Oxidation-Reduction Reactions | | Oxidation | Reduction | |------------------------------|---|---| | In terms of oxidation number | Increase in oxidation number of an atom | Decrease in oxidation number of an atom | | In terms of electrons | Loss of electrons by an atom | Gain of electrons by an atom | | In terms of oxygen | Gain of one or more O atoms | Loss of one or more O atoms | [@] Brooks/Cole, Cengage Learning $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s) $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s) ### **Net** Ionic Equation Precipitation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) $$H_3O^+ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I)$$ ### **Net** Ionic Equation Precipitation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) Acid-Base $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) ### **Net** Ionic Equation Precipitation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) Acid-Base $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) ### **Net** Ionic Equation $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) Acid-Base $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) 0 0 $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) $$\longrightarrow$$ CaCO₃ (s) $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) Acid-Base $$\longrightarrow$$ 2 H₂O (I) $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow $CaCO_3$ (s) Acid-Base $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) $$2 \text{ Mg (s)} + O_2 \text{ (g)} \longrightarrow 2 \text{ MgO (s)}$$ $$0 +2 -2$$ $$Ca^{2+}$$ (aq) + CO_3^{2-} (aq) \longrightarrow CaCO₃ (s) Acid-Base $$H_3O^+$$ (aq) + OH^- (aq) \longrightarrow 2 H_2O (I) Oxidation-Reduction 2 Mg (s) + $$O_2$$ (g) \longrightarrow 2 MgO (s) +2 -2 (1) (2) Cu (s) + 2 AgNO₃ (aq) $$\rightarrow$$ Cu(NO₃)₂ (aq) + 2 Ag (s) $$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$ Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq) $$\rightarrow$$ Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s) $$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$ Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq) $$\rightarrow$$ Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s) is oxidized (reducing agent) $$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$ Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq) $$\rightarrow$$ Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s) is oxidized (reducing agent) is reduced (oxidizing agent) $$Cu(s) + 2 AgNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 2 Ag(s)$$ Cu (s) + 2 AgNO₃ (aq) $$\rightarrow$$ Cu(NO₃)₂ (aq) + 2 Ag (s) (1) (2) Cu (s) + 2 AgNO₃ (aq) $$\rightarrow$$ Cu(NO₃)₂ (aq) + 2 Ag (s) Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq) $$\rightarrow$$ Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s) 0 +1 -1 +2 -1 0 is oxidized (reducing agent) spectator is reduced (oxidizing agent) (1) (2) Cu (s) + 2 AgNO₃ (aq) $$\rightarrow$$ Cu(NO₃)₂ (aq) + 2 Ag (s) Cu (s) + 2 Ag⁺ (aq) + 2 NO₃⁻ (aq) $$\rightarrow$$ Cu²⁺ (aq) + 2 NO₃⁻ (aq) + 2 Ag (s) 0 +1 -1 +2 -1 0 is reduced (oxidizing agent) spectator is oxidized (reducing agent) Fig. 3-21, p. 148 Exercise 3-13, p. 148 # Which is the oxidizing agent? (1) (2) (3) $$3 \text{ CH}_3 \text{CH}_2 \text{OH(aq)} + 2 \text{ Cr}_2 \text{O}_7^{2-} \text{(aq)} + 16 \text{ H}_3 \text{O}^+ \text{(aq)}$$ ethanol dichromate ion; orange-red $$3 \text{ CH}_3\text{CO}_2\text{H(aq)} + 4 \text{ Cr}^{3+}(\text{aq}) + 27 \text{ H}_2\text{O}(\ell)$$ acetic acid chromium(III) ion; green Fig. 3-21, p. 148 Exercise 3-13, p. 148 # Which is the oxidizing agent? (1) (2) (3) $$3 \text{ CH}_3\text{CO}_2\text{H(aq)} + 4 \text{ Cr}^{3+}(\text{aq}) + 27 \text{ H}_2\text{O}(\ell)$$ acetic acid chromium(III) ion; green