Energy

Kinetic: Mechanical - moving car
Thermal - moving molecules
Electrical - moving charge
Sound - moving waves of gas compression and expansion

Potential: Gravitational - the eraser
Chemical - gasoline
Electrostatic - +..- attraction (static E)
$1 \mathrm{cal}($ calorie $)=4.184 \mathrm{~J}$ (joules)
$1 \mathrm{Cal}($ Dietary Calorie $)=1000$ cal (calorie)

Law of Conservation of Energy

The total energy of the universe is constant

System: define carefully

System + Surroundings = Universe

All nomenclature is from the point of view of the system

Temperature reflects molecular kinetic energy (thermal)

Fig. 5-3, p. 211

Temperature reflects molecular kinetic energy (thermal)

Transfer of thermal energy is spontaneous

Fig. 5-3, p. 211

Temperature reflects molecular kinetic energy (thermal)

Transfer of thermal energy is spontaneous

Continues until the system reaches thermal equilibrium

Temperature reflects molecular kinetic energy

Temperature reflects molecular kinetic energy

Temperature reflects molecular kinetic energy

Is x (1) less than $38^{\circ} \mathrm{C}$ or (2) greater than $38^{\circ} \mathrm{C}$?

Temperature reflects molecular kinetic energy

Mass matters

Is x (1) less than $38^{\circ} \mathrm{C}$ or (2) greater than $38^{\circ} \mathrm{C}$?

Temperature reflects molecular kinetic energy

Mass matters

Heat Capacity matters

Is x (1) less than $38^{\circ} \mathrm{C}$ or (2) greater than $38^{\circ} \mathrm{C}$?

$q=C m \Delta T$

Energy (q) required to change the temperature ($\Delta \mathrm{T}$) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature ($\Delta \mathrm{T}$) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature ($\Delta \mathrm{T}$) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature (ΔT) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature (ΔT) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature (ΔT) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

Energy (q) required to change the temperature (ΔT) of a given mass (m) of a substance with a specific heat capacity (C)

$q=C m \Delta T$

$$
q=\frac{\mathrm{C}}{\left(0.385 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)} \frac{\mathrm{m}}{(10.0 \mathrm{~g})(598 \mathrm{~K}-298 \mathrm{~K})} \frac{\Delta \mathrm{T}}{\substack{T_{\text {final }}}} \begin{gathered}
T_{\text {initial }} \\
\text { Final temp. } \\
\text { Initial temp. }
\end{gathered}
$$

[^0]
$q=C m \Delta T$

Specific heat capacity (per gram)

$$
q=\frac{\mathrm{C}}{\left(0.385 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)} \frac{\mathrm{m}}{(10.0 \mathrm{~g})(598 \mathrm{~K}-298 \mathrm{~K})} \frac{\Delta \mathrm{T}}{\substack{\uparrow}} \begin{gathered}
T_{\text {final }} \\
\text { Final temp. }
\end{gathered} \begin{gathered}
T_{\text {initial }} \\
\text { Initial temp. }
\end{gathered}
$$

[^1]
$q=C m \Delta T$

Specific heat capacity (per gram)
mass

$$
q=\frac{\mathrm{C}}{\left(0.385 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)} \frac{\mathrm{m}}{(10.0 \mathrm{~g})(598 \mathrm{~K}-298 \mathrm{~K})} \frac{\Delta \mathrm{T}}{\substack{\left(\begin{array}{c}
\text { Thinal } \\
\text { Final temp. }
\end{array} \\
\begin{array}{c}
\tau_{\text {Initial }} \\
\text { Initial temp. }
\end{array}\right.}+1160 \mathrm{~J}}
$$

[^2]p. 216

$q=C m \Delta T$

Specific heat capacity (per gram)

Temperature
(in Kelvin)
mass

$$
\begin{aligned}
& q=\frac{\mathrm{C}}{\left(0.385 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)} \frac{\mathrm{m}}{(10.0 \mathrm{~g})(598 \mathrm{~K}-298 \mathrm{~K})} \frac{\Delta \mathrm{T}}{\uparrow \uparrow \uparrow \uparrow} \\
& T_{\text {final }} \\
& \text { Final temp. } \\
& T_{\text {initial }} \\
& \text { Initial temp. }
\end{aligned}
$$

$q=C m \Delta T$

Specific heat capacity (per gram)

Temperature
(in Kelvin)
mass

$$
q=\frac{\mathrm{C}}{\left(0.385 \frac{\mathrm{~J}}{\mathrm{~g} \cdot \mathrm{~K}}\right)} \frac{\mathrm{m}}{(10.0 \mathrm{~g})(598 \mathrm{~K}-298 \mathrm{~K})} \frac{\Delta \mathrm{T}}{\substack{T_{\text {final }} \\
\text { Final temp. }}} \begin{gathered}
T_{\text {initial }} \\
\text { Initial temp. }
\end{gathered}
$$

© Brooks/Cole, Cengage Learning
It takes $1,160 \mathrm{~J}$ energy to heat 10 g of Cu from 298 K to 598 K

Hot metal (55.0 g iron)
$99.8^{\circ} \mathrm{C}$

Cool water (225 g)
$21.0^{\circ} \mathrm{C}$

Hot metal (55.0 g iron)
$99.8^{\circ} \mathrm{C}$

Let's do an experiment!

Cool water (225 g)

$21.0^{\circ} \mathrm{C}$

Hot metal (55.0 g iron)

Hot metal (55.0 g iron)

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.
$23.1^{\circ} \mathrm{C}$

Water is warmed in

Experimental result

 endothermic process.ΔT of water is positive.
$q_{\text {water }}$ is positive.

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

Experimental result

Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

55 g Fe at $99.8^{\circ} \mathrm{C}$

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

Experimental result

Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

55 g Fe at $99.8^{\circ} \mathrm{C}$

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

Experimental result

Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

55 g Fe at $99.8^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

Experimental result
Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

55 g Fe at $99.8^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

\leftarrow

Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

55 g Fe at $99.8^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

Metal cools in exothermic process.
ΔT of metal is negative.
$q_{\text {metal }}$ is negative.

$23.1^{\circ} \mathrm{C}$

Experimental result

Water is warmed in endothermic process.
ΔT of water is positive.
$q_{\text {water }}$ is positive.

Facts:
융 55 g Fe at $99.8^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

System

$\stackrel{0}{0} 55 \mathrm{~g} \mathrm{Fe}$ at $99.8^{\circ} \mathrm{C}$
 $225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

System
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$\stackrel{\#}{\#} 55 \mathrm{~g} \mathrm{Fe}$ at $99.8^{\circ} \mathrm{C}$
 $225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

System

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$$
\left[C_{\text {water }} \cdot m_{\text {water }} \cdot\left(T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0
$$

55 g Fe at $99.8^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$ $225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

$$
\begin{aligned}
& C_{\text {water }}=4.184 \mathrm{~J} \cdot g^{-1} \cdot K^{-1} \\
& C_{F e}=\text { unknown }
\end{aligned}
$$

System

黄 55 g Fe at $23.1^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

System

$$
C_{\text {water }}=4.184 \mathrm{~J} \cdot g^{-1} \cdot K^{-1}
$$

$$
C_{F e}=\text { unknown }
$$

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$$
\left[C_{\text {water }} \cdot m_{\text {water }} \cdot\left(T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0
$$

55 g Fe at $99.8^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

$$
C_{\text {water }}=4.184 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot K^{-1}
$$

$$
C_{F e}=\text { unknown }
$$

System

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$\left[C_{\text {water }} \cdot m_{\text {water }} \cdot\left(T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0$

$$
\left[\left(4.184 J \cdot g^{-1} \cdot K^{-1}\right) \cdot(225 g) \cdot(23.1-21.0)^{\circ} \mathrm{C}\right]+\left[C_{F_{c} c} \cdot(55 g) \cdot(23.1-99.8)^{\circ} \mathrm{C}\right]=0
$$

55 g Fe at $99.8^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

$$
C_{\text {water }}=4.184 \mathrm{~J} \cdot g^{-1} \cdot K^{-1}
$$

$$
C_{F e}=\text { unknown }
$$

System

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$\left[C_{\underline{\text { water }}} \cdot \underline{m_{\text {water }}} \cdot \underline{\left(T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)}\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0$

$$
\left[\left(\underline{4.184 \mathrm{~J} \cdot g^{-1} \cdot K^{-1}}\right) \cdot(\underline{(225 g}) \cdot(23.1-21.0)^{\circ} \mathrm{C}\right]+\left[C_{F_{c}} \cdot(55 g) \cdot(23.1-99.8)^{\circ} \mathrm{C}\right]=0
$$

55 g Fe at $99.8^{\circ} \mathrm{C}$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

$$
C_{\text {water }}=4.184 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot K^{-1}
$$

$$
C_{F e}=\text { unknown }
$$

System

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$\left[C_{\underline{\text { water }}} \cdot \underline{m_{\text {water }}} \cdot\left(\underline{\left.T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)}\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0\right.$
$\left[\left(\underline{4.184 J \cdot g^{-1} \cdot K^{-1}}\right) \cdot \underline{(225 g)} \cdot(\underline{(23.1-21.0})^{\circ} \mathrm{C}\right]+\left[C_{F_{e}} \cdot(55 g) \cdot(23.1-99.8)^{\circ} \mathrm{C}\right]=0$
$[1976.94 \mathrm{~J}]+\left[C_{F e} \cdot(-4218.5) \cdot \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\right]=0$
Fig. 5-8, p. 217

55 g Fe at $99.8^{\circ} \mathrm{C}$
$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $21.0^{\circ} \mathrm{C}$

55 g Fe at $23.1^{\circ} \mathrm{C}$

System

$$
C_{\text {water }}=4.184 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot K^{-1}
$$

$$
C_{F e}=\text { unknown }
$$

$225 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $23.1^{\circ} \mathrm{C}$

$$
q_{\text {system }}=q_{\text {water }}+q_{F e}=0
$$

$\left[C_{\underline{\text { water }}} \cdot \underline{m_{\text {water }}} \cdot \underline{\left(T_{\text {final }}^{\text {water }}-T_{\text {initial }}^{\text {water }}\right)}\right]+\left[C_{F e} \cdot m_{F e} \cdot\left(T_{\text {final }}^{F e}-T_{\text {initial }}^{F e}\right)\right]=0$

$$
[1976.94 J]+\left[C_{F e} \cdot(-4218.5) \cdot g \cdot{ }^{\circ} \mathrm{C}\right]=0 \quad C_{r e}=\frac{197.944}{(4218.5) \cdot g^{\circ} \mathrm{C} \mathrm{C}}=0.469 \cdot \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot K^{-1}
$$

Fig. 5-8, p. 217

State

State

Examples?

State

Examples?

Solid

State

Examples?

Solid

Liquid

State

Examples?

Solid
 Liquid

Gas

State

Examples?

Solid Liquid

Gas

Aqueous (solvated)

State

Examples?

Solid $\longrightarrow \Delta \mathrm{H}_{\text {fusion }}$
Liquid
Gas

Aqueous (solvated)

State

Examples?

Aqueous (solvated)

Fig. 5-9, p. 219

Fig. 5-9, p. 219

Fusion / Melting Δ State, constant T

State changes.
Temperature does NOT change.

Fig. 5-10, p. 220

Heat Capacity ($\Delta \mathrm{T}$, constant state)

Temperature changes.
State does NOT change.

Energy of a System

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system
Or the system can do work, which takes energy out of the system

Change in energy content

Energy transferred as

 work to or from the system

$$
\Delta U=q+w
$$

Positive value: energy INTO the system

Energy transferred as heat to or from the system

Work (at constant pressure)

$$
w=-P \times \Delta V
$$

Pressure

A Closer Look, p. 225

Energy is a State Function

Energy is a State Function

A state function defines a system independent of "how you got there"

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:
NOT State Functions:

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:

Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$

NOT State Functions:

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:

Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
 Pressure

NOT State Functions:

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume

NOT State Functions:

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation

NOT State Functions:

Energy is a State Function

A state function defines a system independent of "how you got there"

State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation
Your bank balance

Energy is a State Function

A state function defines a system

 independent of "how you got there"State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation
Your bank balance

NOT State Functions:
Driving distance to Boston

Energy is a State Function

A state function defines a system

 independent of "how you got there"State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation
Your bank balance

NOT State Functions:
Driving distance to Boston q

Energy is a State Function

A state function defines a system

 independent of "how you got there"State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation
Your bank balance

NOT State Functions:
Driving distance to Boston
q
W

(a) The formation of CO_{2} can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -393.5 kJ , no matter which path is followed.

(b) The formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -285.8 kJ , no matter which path is followed.

(a) The formation of CO_{2} can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -393.5 kJ , no matter which path is followed.

(b) The formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -285.8 kJ , no matter which path is followed.

Energy level diagram for the decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$

Benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$, occurs naturally in many berries. Its heat of combustion is well known, so it is used as a standard to calibrate calorimeters.

1-butene

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$

$\mathrm{CH}_{3} \mathrm{OH}(\ell)+3 / 2 \mathrm{O}_{2}(\mathrm{~g})$

-955.1 kJ
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\ell)$

TABLE 1 Producing Electricity in theUnited States (2006)
Coal 50\%
Nuclear 19\%
Natural gas 19\%
Hydroelectric 7\%
Petroleum 3\%
Other renewables 2\%

TABLE 2 Energy Released by Combustion of Fossil Fuels

Substance

Energy Released (kJ/g)

Coal	$29-37$
Crude petroleum	43
Gasoline (refined petroleum)	47
Natural gas (methane)	50

TABLE 3 Types of Coal

Type	Consistency	Sulfur Content	$(\mathrm{kJ} / \mathrm{g})$
Lignite	Very soft	Very low	$28-30$
Bituminous coal	Soft	High	$29-37$
Anthracite	Hard	Low	$36-37$

(©) Brooks/Cole, Cengage Learning
Interchapter, Fig. 4, p. 259

(a) Methane hydrate burns as methane gas escapes from the solid hydrate.
(b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

(c) A colony of worms on an outcropping of methane hydrate in the Gulf of Mexico.

(a) Methane hydrate burns as methane gas escapes from the solid hydrate.
(b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

H_{2} gas
8
Metaladsorbed hydrogen

Solid solution α-phase

Hydride phase β-phase ∞
 β-phase

Metal hydride
Electrolyte

Isooctane
 $\mathrm{C}_{8} \mathrm{H}_{18}$

[^0]: © Brooks/Cole, Cengage Learning

[^1]: © Brooks/Cole, Cengage Learning

[^2]: (c) Brooks/Cole, Cengage Learning

