
Energy
Kinetic:

Potential:

Mechanical – moving car
Thermal – moving molecules
Electrical – moving charge
Sound – moving waves of gas compression and expansion

Gravitational – the eraser
Chemical – gasoline
Electrostatic – +..- attraction (static E)

1 cal (calorie) = 4.184 J (joules)

1 Cal (Dietary Calorie) = 1000 cal (calorie)



Law of Conservation of Energy

The total energy of the universe is constant

System: define carefully

System + Surroundings = Universe

All nomenclature is from the 
point of view of the system
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Temperature reflects molecular kinetic energy
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T = 21°C T = 55°C

Transfer of thermal 
energy is spontaneous

Continues until the system 
reaches thermal equilibrium

T = 38°C T = 38°C

Thermal Equilibrium
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Temperature reflects molecular kinetic energy

T = 21°C
T = 55°C T = x°C

T = x °C

Is x (1) less than 38°C or (2) greater than 38°C?

Mass matters

Heat Capacity matters
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€ 

q = CmΔT

C m ∆T

Specific heat capacity
(per gram)

mass

Temperature
(in Kelvin)

It takes 1,160 J energy to heat 10g of Cu from 298K to 598K 
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Let’s do an experiment!
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CFe = unknown
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4.184J ⋅ g−1 ⋅K−1( ) ⋅ 225g( ) ⋅ 23.1− 21.0( )°C[ ] + CFe ⋅ 55g( ) ⋅ 23.1− 99.8( )°C[ ] = 0

€ 

1976.94J[ ] + CFe ⋅ −4218.5( ) ⋅ g ⋅ °C[ ] = 0

€ 

CFe =
1976.94J

4218.5( ) ⋅ g ⋅ °C
= 0.469 ⋅ J ⋅ g-1 ⋅K−1
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Fusion / Melting  ∆State, constant T

∆Hfusion
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Heat Capacity  (∆T, constant state)
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Energy of a System

We can also do WORK on a 
system, as a way of putting energy 
into the system

Or the system can do work, which 
takes energy out of the system



p. 223

Positive value:
 energy INTO the system



p. 224



A Closer Look, p. 225



Fig. 5-14, p. 230
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Energy is a State Function

A state function defines a system 
independent of “how you got there”

State Functions: NOT State Functions:

Energy (∆U, ∆H)
Pressure
Volume
Temperature
Elevation
Your bank balance

Driving distance to Boston
q
w
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A Closer Look, p. 238



Study Question #39, p. 245



Study Question #101, p. 252



Study Question #105, p. 253



Interchapter Opener, p. 254



Interchapter, Fig. 1, p. 256
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Interchapter, Table 3, p. 258
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Interchapter, Fig. 9, p. 262



Interchapter, Fig. 11, p. 263



Interchapter, Fig. 12, p. 264



Interchapter, Fig. 13, p. 264



Interchapter, Fig. 16, p. 265



Interchapter, p. 267


