Energy

- Kinetic: Mechanical moving car Thermal – moving molecules Electrical – moving charge Sound – moving waves of gas compression and expansion
- Potential: Gravitational the eraser Chemical – gasoline Electrostatic – +..- attraction (static E)

1 cal (calorie) = 4.184 J (joules)

1 Cal (Dietary Calorie) = 1000 cal (calorie)

Law of Conservation of Energy

The total energy of the universe is constant

System: define carefully

System + Surroundings = Universe

All nomenclature is from the point of view of the system

Exothermic: energy transferred from system to surroundings © Brooks/Cole, Cengage Learning

Temperature reflects molecular kinetic energy (thermal)

Transfer of thermal energy is *spontaneous*

Fig. 5-3, p. 211

Temperature reflects molecular kinetic energy (thermal)

Thermal Equilibrium

<complex-block>

Transfer of thermal energy is *spontaneous*

Continues until the system reaches thermal equilibrium

Fig. 5-3, p. 211

Thermal Equilibrium

Thermal Equilibrium

$$T = x ^{\circ}C$$
$$T = x^{\circ}C$$

Is x (1) less than 38°C or (2) greater than 38°C?

Mass matters

Is x (1) less than 38°C or (2) greater than 38°C?

Mass matters Heat Capacity matters

Is x (1) less than 38°C or (2) greater than 38°C?

 $q = Cm\Delta T$

$$q = Cm\Delta T$$

$$q = \left(0.385 \frac{J}{g \cdot K}\right) (10.0 \text{ g})(598 \text{ K} - 298 \text{ K}) = +1160 \text{ J}$$

$$\uparrow \qquad \uparrow$$

$$T_{\text{final}} \qquad T_{\text{initial}}$$
Final temp. Initial temp.

$$q = Cm\Delta T$$

$$q = \frac{C}{\left(0.385 \frac{J}{g \cdot K}\right)} (10.0 \text{ g})(598 \text{ K} - 298 \text{ K}) = +1160 \text{ J}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$T_{\text{final}} \qquad T_{\text{initial}}$$
Final temp. Initial temp.

$$q = Cm\Delta T$$

$$q = Cm\Delta T$$

$$q = Cm\Delta T$$

$$q = Cm\Delta T$$

 $q = Cm\Delta T$

Brooks/Cole, Cengage Learning

 $q = Cm\Delta T$

Specific heat capacity (per gram)

@ Brooks/Cole, Cengage Learning

 $q = Cm\Delta T$

Specific heat capacity (per gram)

@ Brooks/Cole, Cengage Learning

 $q = Cm\Delta T$

Brooks/Cole, Cengage Learning

 $q = Cm\Delta T$

It takes 1,160 J energy to heat 10g of Cu from 298K to 598K

Fig. 5-8, p. 217

@ Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

55g Fe at 99.8°C 225g H₂O at 21.0°C

Final State

55g Fe at 23.1°C

225g H₂O at 23.1°C

Final State

55g Fe at 99.8°C 225g H₂O at 21.0°C

55g Fe at 23.1°C

225g H₂O at 23.1°C

System

Final State

55g Fe at 99.8°C 225g H₂O at 21.0°C

55g Fe at 23.1°C

225g H₂O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

itate	55g Fe at 99.8°C
Initial S	225g H ₂ O at 21.0°C
State	55g Fe at 23.1°C
Final	225g H ₂ O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

$$\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$$

state	55g Fe at 99.8°C
Initial S	225g H ₂ O at 21.0°C
State	55g Fe at 23.1°C
Final	225g H ₂ O at 23.1°C

$$C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$$
$$C_{Fe} = unknown$$

$$q_{system} = q_{water} + q_{Fe} = 0$$

$$\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$$

Final State

55g Fe at 99.8°C 225g H₂O at 21.0°C

 $C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$ $C_{Fe} = unknown$

55g Fe at 23.1°C

225g H₂O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

$$\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$$

Initial State 55g Fe at 99.8°C 225g H₂O at 21.0°C **Final State** 55g Fe at 23.1°C

 $C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$ $C_{Fe} = unknown$

225g H₂O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

$$\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$$

 $\left[\left(4.184J \cdot g^{-1} \cdot K^{-1} \right) \cdot \left(225g \right) \cdot \left(23.1 - 21.0 \right)^{\circ} C \right] + \left[C_{Fe} \cdot \left(55g \right) \cdot \left(23.1 - 99.8 \right)^{\circ} C \right] = 0$

Fig. 5-8, p. 217

Initial State 55g Fe at 99.8°C 225g H₂O at 21.0°C **Final State** 55g Fe at 23.1°C

 $C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$ $C_{Fe} = unknown$

225g H₂O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

$$\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$$

$$\left[\left(\underline{4.184J \cdot g^{-1} \cdot K^{-1}} \right) \cdot \left(\underline{225g} \right) \cdot \left(\underline{23.1 - 21.0} \right)^{\circ} C \right] + \left[C_{Fe} \cdot \left(55g \right) \cdot \left(\underline{23.1 - 99.8} \right)^{\circ} C \right] = 0$$

Fig. 5-8, p. 217

Initial State 55g Fe at 99.8°C 225g H₂O at 21.0°C **Final State** 55g Fe at 23 1°C

System
225g H₂O at 23.1°C

$$q_{system} = q_{water} + q_{Fe} = 0$$

 $\left[C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water}\right)\right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe}\right)\right] = 0$
 $\left[\left(4.184J \cdot g^{-1} \cdot K^{-1}\right) \cdot (225g) \cdot (23.1 - 21.0)^{\circ}C\right] + \left[C_{Fe} \cdot (55g) \cdot (23.1 - 99.8)^{\circ}C\right] = 0$
 $\left[1976.94J\right] + \left[C_{Fe} \cdot (-4218.5) \cdot g \cdot {}^{\circ}C\right] = 0$

Fig. 5-8, p. 217

 $C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$

 $C_{Fe} = unknown$

Initial State 55g Fe at 99.8°C 225g H₂O at 21.0°C **Final State** 55g Fe at 23.1°C 225g H₂O at 23.1°C $q_{system} = q_{water} + q_{Fe} = 0$

$$C_{water} = 4.184 J \cdot g^{-1} \cdot K^{-1}$$
$$C_{Fe} = unknown$$

System

$$C_{water} \cdot m_{water} \cdot \left(T_{final}^{water} - T_{initial}^{water} \right) \right] + \left[C_{Fe} \cdot m_{Fe} \cdot \left(T_{final}^{Fe} - T_{initial}^{Fe} \right) \right] = 0$$

$$\left[\left(\underline{4.184J \cdot g^{-1} \cdot K^{-1}} \right) \cdot \left(\underline{225g} \right) \cdot \left(\underline{23.1 - 21.0} \right)^{\circ} C \right] + \left[C_{Fe} \cdot \left(55g \right) \cdot \left(\underline{23.1 - 99.8} \right)^{\circ} C \right] = 0$$

 $C_{Fe} = \frac{1976.94J}{(4218.5) \cdot g \cdot {}^{\circ}C} = 0.469 \cdot J \cdot g^{-1} \cdot K^{-1}$ $[1976.94J] + [C_{Fe} \cdot (-4218.5) \cdot g \cdot \circ C] = 0$

Fig. 5-8, p. 217

Examples?

Examples?

Solid

Examples?

Solid Liquid

Examples?

Solid Liquid Gas

Examples?

Solid Liquid Gas

Aqueous (solvated)

Examples?

Aqueous (solvated)

Examples?

Aqueous (solvated)

© Brooks/Cole, Cengage Learning

© Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

© Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

Fusion / Melting Δ State, constant T

Temperature does **NOT** change.

C Brooks/Cole, Cengage Learning

Heat Capacity (ΔT , constant state)

Temperature changes. State does NOT change.

Fig. 5-10, p. 220

Energy of a System

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Or the system can do work, which takes energy out of the system

Energy transferred as work to or from the system \downarrow $\gamma + w$

© Brooks/Cole, Cengage Learning

Energy transferred as heat to or from the system

Change in volume Work (at constant pressure) $w = -P \times \Delta V$ Pressure

@ Brooks/Cole, Cengage Learning

A Closer Look, p. 225

A state function defines a system independent of "how you got there"

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy ($\Delta U, \Delta H$)

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy (ΔU , ΔH) Pressure

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy (∆U, ∆H) Pressure Volume

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy (ΔU , ΔH) Pressure Volume Temperature

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy (∆U, ∆H) Pressure Volume Temperature Elevation

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy $(\Delta U, \Delta H)$ Pressure Volume Temperature Elevation Your bank balance

A state function defines a system independent of "how you got there"

State Functions:

NOT State Functions:

Energy (Δ U, Δ H) Pressure Volume Temperature Elevation Your bank balance Driving distance to Boston

A state function defines a system independent of "how you got there"

State Functions:

Energy (Δ U, Δ H) Pressure Volume Temperature Elevation Your bank balance NOT State Functions:

Driving distance to Boston **Q**

A state function defines a system independent of "how you got there"

State Functions:

Energy $(\Delta U, \Delta H)$ Pressure Volume Temperature Elevation Your bank balance NOT State Functions: Driving distance to Boston Q W

- (a) The formation of CO₂ can occur in a single step or in a succession of steps. Δ_rH° for the overall process is 393.5 kJ, no matter which path is followed.
 [®] Brooks/Cole, Cengage Learning
- (b) The formation of $H_2O(\ell)$ can occur in a single step or in a succession of steps. $\Delta_r H^\circ$ for the overall process is -285.8 kJ, no matter which path is followed.

Fig. 5-16, p. 234

Fig. 5-16, p. 234

Fig. 5-16, p. 234

Energy level diagram for the decomposition of $CaCO_3(s)$

A Closer Look, p. 238

Benzoic acid, $C_6H_5CO_2H$, occurs naturally in many berries. Its heat of combustion is well known, so it is used as a standard to calibrate calorimeters.

C Brooks/Cole, Cengage Learning

Study Question #39, p. 245

cis-2-butene

trans-2-butene

1-butene

Study Question #101, p. 252

Study Question #105, p. 253

Interchapter Opener, p. 254

Index: 1990 = 100

@ Brooks/Cole, Cengage Learning

Interchapter, Fig. 1, p. 256

TABLE 1 Producing Electricity in the United States (2006)

Coal	50%
Nuclear	19%
Natural gas	19%
Hydroelectric	7%
Petroleum	3%
Other renewables	2%

TABLE 2 Energy Released by Combustion of Fossil Fuels

Substance	Energy Released (kJ/g)	
Coal	29-37	
Crude petroleum	43	
Gasoline (refined petroleum)	47	
Natural gas (methane)	50	

TABLE 3 Types of Coal

Consistency	Sulfur Content	Heat Content (kJ/g)
Very soft	Very low	28-30
Soft	High	29–37
Hard	Low	36-37
	Very soft Soft	Very soft Very low Soft High

© Brooks/Cole, Cengage Learning

...

(a) Methane hydrate burns as methane gas escapes from the solid hydrate.

@ Brooks/Cole, Cengage Learning

(b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

(c) A colony of worms on an outcropping of methane hydrate in the Gulf of Mexico.

(a) Methane hydrate burns as methane gas escapes from the solid hydrate. (b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

Interchapter, Fig. 9, p. 262

@ Brooks/Cole, Cengage Learning

Interchapter, Fig. 16, p. 265

Isooctane C₈H₁₈