Energy of a System

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system
Or the system can do work, which takes energy out of the system

Change in energy content

Energy transferred as

 work to or from the system

$$
\Delta U=q+w
$$

Positive value: energy INTO the system

Energy transferred as heat to or from the system

Work (at constant pressure)

$$
w=-P \times \Delta V
$$

Pressure

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 \mathrm{~L}-0.5 \mathrm{~L})=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 L-0.5 L)=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 L-0.5 L)=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

But atm L is units of energy!?

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 L-0.5 \mathrm{~L})=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

But atm L is units of energy!?
From inside back of book

$$
R=8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}} \quad R=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}
$$

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 \mathrm{~L}-0.5 \mathrm{~L})=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

But atm L is units of energy!?
From inside back of book
$R=8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}} \quad R=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}$
Therefore:

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 \mathrm{~L}-0.5 \mathrm{~L})=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

But atm L is units of energy!?
From inside back of book
$R=8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}} \quad R=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}$
Therefore:

$$
\begin{aligned}
& 8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}} \\
& \mathrm{~L} \cdot \mathrm{~atm}=101.32 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& w=-P\left(V_{\text {final }}-V_{\text {initial }}\right) \\
& w=-(1 \mathrm{~atm})(0.1 \mathrm{~L}-0.5 \mathrm{~L})=+0.4 \mathrm{~atm} \cdot L
\end{aligned}
$$

Work is positive.
Work is done ON system Energy of system increases

But atm L is units of energy!?
From inside back of book
$R=8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}} \quad R=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}}$
Therefore:

$$
\begin{aligned}
& 8.3144 \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{~mol}}=0.082057 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~K} \cdot \mathrm{~mol}} \\
& L \cdot \mathrm{~atm}=101.32 \mathrm{~J} \\
& w=+0.4 \mathrm{~atm} \cdot L\left(\frac{101.32 \mathrm{~J}}{\mathrm{~atm} \cdot L}\right)=40.53 \mathrm{~J}
\end{aligned}
$$

A Closer Look, p. 225
q and w

q and w

Energy transferred as heat to system (endothermic)

q and w

Energy transferred as heat to system (endothermic)
 $q>0$

Energy transferred as heat from system (exothermic) q<0

q and w

Energy transferred as heat to system (endothermic) $\quad \mathrm{q}>0$

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system

q and w

Energy transferred as heat to system (endothermic) $\quad \mathrm{q}>0$

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system
$w>0$

Energy transferred as word done by system
w<0

q and w

Energy transferred as heat to system (endothermic) $\quad \mathrm{q}>0$

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system
$w>0$

Energy transferred as word done by system
$w<0$

q and w

Energy transferred as heat to system (endothermic) $\quad q>0 \quad U \uparrow$

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system
$w>0$

Energy transferred as word done by system
$w<0$

q and w

Energy transferred as heat to system (endothermic) $\quad q>0 \quad U \uparrow$

Energy transferred as heat from system (exothermic) $\quad q<0 \quad U \downarrow$

Energy transferred as work done on system
$w>0$

Energy transferred as word done by system
$w<0$

q and w

Energy transferred as heat to system (endothermic) $\quad q>0 \quad U \uparrow$

Energy transferred as heat from system (exothermic) $\quad q<0 \quad U \downarrow$

Energy transferred as work done on system
Us 0

Energy transferred as word done by system
$w<0$

q and w

Energy transferred as heat to system（endothermic）$\quad q>0 \quad U \uparrow$

Energy transferred as heat from system（exothermic）$\quad q<0 \quad U \downarrow$

Energy transferred as work done on system
ubs

Energy transferred as word done by system

$\Delta \mathrm{H}$ - enthalpy

Assume reaction at constant pressure

$\Delta \mathrm{H}$ - enthalpy

Assume reaction at constant pressure

$$
\begin{aligned}
\Delta U & =q_{p}+w_{p} \\
\Delta U & =q_{p}-P \Delta V \\
\therefore \quad q_{p} & =\Delta U+P \Delta V
\end{aligned}
$$

$$
\begin{aligned}
& \text { Define }: H=U+P V \\
& \therefore \Delta H=\Delta U+P \Delta V \\
& \therefore \Delta H=q_{p}
\end{aligned}
$$

$\Delta \mathrm{H}$ - enthalpy

Assume reaction at constant pressure

$\Delta U=q_{p}+w_{p}$
$\Delta U=q_{p}-P \Delta V$
$\therefore \quad q_{p}=\Delta U+P \Delta V$

Bottom line:
almost all of biology occurs at 1 atm pressure (constant)

$$
\begin{aligned}
& \text { Define }: H=U+P V \\
& \therefore \Delta H=\Delta U+P \Delta V \\
& \therefore \Delta H=q_{p}
\end{aligned}
$$

$\Delta \mathrm{H}$ - enthalpy

Assume reaction at constant pressure

$\Delta U=q_{p}+w_{p}$
$\Delta U=q_{p}-P \Delta V$
$\therefore \quad q_{p}=\Delta U+P \Delta V$

Bottom line:
almost all of biology occurs at 1 atm pressure (constant)
$\Delta \mathrm{H}$ is a useful measure of the change in energy of a system

$$
\begin{aligned}
& \text { Define }: H=U+P V \\
& \therefore \Delta H=\Delta U+P \Delta V \\
& \therefore \Delta H=q_{p}
\end{aligned}
$$

Energy is a State Function

A state function defines a system

 independent of "how you got there"State Functions:
Energy $(\Delta \mathrm{U}, \Delta \mathrm{H})$
Pressure
Volume
Temperature
Elevation
Your bank balance

NOT State Functions:
Driving distance to Boston
q
W

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} /$ mole-rxn
What does this tell us?
$\Delta H>0$ endothermic.
Have to put energy in (heat) to make the reaction go to the right as written
241.8 per mole as written (per $1 \mathrm{H}_{2} 0$ consumed, or per $1 \mathrm{H}_{2}$ produced)

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} /$ mole-rxn

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} /$ mole-rxn

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} /$ mole-rxn
What is $\Delta \mathrm{H}^{\circ}$ for

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
What is ΔH° for
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Enthalpy $(\Delta \mathrm{H})$ of a reaction

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$
What is ΔH° for
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{array}{cr}
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} / \mathrm{mole}-\mathrm{rxn} \\
\stackrel{\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})}{2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})} & \Delta \mathrm{H}^{\circ}=+241.8 \mathrm{~kJ} / \mathrm{mole}-\mathrm{rxn} \\
\hline \mathrm{H}^{\circ}=+2(241.8 \mathrm{~kJ} / \mathrm{mole}-\mathrm{rxn})
\end{array}
$$

$\Delta \mathrm{H}^{\circ}=+483.6 \mathrm{~kJ} / \mathrm{mole}-\mathrm{rxn}$

Chemical Equation Accounting/Math

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}^{\circ}=? ? \mathrm{~kJ} / \mathrm{mol}$

Chemical Equation Accounting/Math
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$

Chemical Equation Accounting/Math

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$

Chemical Equation Accounting/Math

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta H^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\underbrace{-110.5 \mathrm{~kJ}} \begin{gathered}
\Delta_{\mathrm{r}} H_{1}^{\circ}= \\
-110(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

Energy

$$
\begin{gathered}
\Delta_{\mathrm{r}} H_{3}^{\circ}= \\
\Delta_{\mathrm{r}} H_{1}^{\circ}+\Delta_{\mathrm{r}} H_{2}^{\circ} \\
=-393.5 \mathrm{~kJ}
\end{gathered}
$$

$$
\begin{gathered}
\Delta_{\mathrm{r}} H_{2}^{\circ}= \\
-283.0 \mathrm{~kJ}
\end{gathered}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$\Delta H^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{CO}_{2}(\mathrm{~g})$
(a) The formation of CO_{2} can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -393.5 kJ , no matter which path is followed.

$$
\mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})
$$

$$
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \\
& \mathrm{CO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \\
& \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})
\end{aligned}
$$

$$
\begin{aligned}
& \Delta H^{\circ}=-110.5 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta H^{\circ}=-283.0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\Delta H^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}
$$

$$
\mathrm{CO}_{2}(\mathrm{~g})
$$

(a) The formation of CO_{2} can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -393.5 kJ , no matter which path is followed.

(b) The formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -285.8 kJ , no matter which path is followed.

Phase Change!

(b) The formation of $\mathrm{H}_{2} \mathrm{O}(\ell)$ can occur in a single step or in a succession of steps. $\Delta_{\mathrm{r}} H^{\circ}$ for the overall process is -285.8 kJ , no matter which path is followed.

Energy level diagram for the decomposition of $\mathrm{CaCO}_{3}(\mathrm{~s})$

Math Gymnastics: What's it Good For?

ΔH_{f}°

Math Gymnastics: What's it Good For?

Standard enthalpies of formation

Appendix L - page A29

ΔH_{f}°

Math Gymnastics: What's it Good For?

Standard enthalpies of formation

 Appendix L - page A29ΔH_{f}°

Math Gymnastics: What's it Good For?

Standard enthalpies of formation Appendix L - page A29

Math Gymnastics: What's it Good For?

Standard enthalpies of formation Appendix L - page A29

Math Gymnastics: What's it Good For?

Standard enthalpies of formation Appendix L - page A29

1-butene

TABLE 2 Energy Released by Combustion of Fossil Fuels

Substance

Energy Released (kJ/g)

Coal	$29-37$
Crude petroleum	43
Gasoline (refined petroleum)	47
Natural gas (methane)	50

TABLE 1 Producing Electricity in theUnited States (2006)
Coal 50\%
Nuclear 19\%
Natural gas 19\%
Hydroelectric 7\%
Petroleum 3\%
Other renewables 2\%

TABLE 3 Types of Coal

Type	Consistency	Sulfur Content	$(\mathrm{kJ} / \mathrm{g})$
Lignite	Very soft	Very low	$28-30$
Bituminous coal	Soft	High	$29-37$
Anthracite	Hard	Low	$36-37$

(a) Methane hydrate burns as methane gas escapes from the solid hydrate.
(b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

H_{2} gas
8
Metaladsorbed hydrogen

Solid solution α-phase

Hydride phase β-phase ∞
 β-phase

Metal hydride
Electrolyte

Isooctane
 $\mathrm{C}_{8} \mathrm{H}_{18}$

