Energy of a System

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Energy of a System

We can also do WORK on a system, as a way of putting energy into the system

Or the system can do work, which takes energy out of the system

Energy transferred as work to or from the system \downarrow $\gamma + w$

© Brooks/Cole, Cengage Learning

Energy transferred as heat to or from the system

Change in volume Work (at constant pressure) $w = -P \times \Delta V$ Pressure

@ Brooks/Cole, Cengage Learning

$$w = -P(V_{final} - V_{initial})$$
$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

$$w = -P(V_{final} - V_{initial})$$

$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

$$w = -P(V_{final} - V_{initial})$$

$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

But atm L is units of energy!?

$$w = -P(V_{final} - V_{initial})$$

$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

But atm L is units of energy!?

From inside back of book

$$R = 8.3144 \frac{J}{K \cdot mol} \qquad R = 0.082057 \frac{L \cdot atm}{K \cdot mol}$$

$$w = -P(V_{final} - V_{initial})$$
$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

But atm L is units of energy!?

From inside back of book

$$R = 8.3144 \frac{J}{K \cdot mol} \qquad R = 0.082057 \frac{L \cdot atm}{K \cdot mol}$$

Therefore:

$$w = -P(V_{final} - V_{initial})$$

$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

But atm L is units of energy!?

From inside back of book

$$R = 8.3144 \frac{J}{K \cdot mol} \qquad R = 0.082057 \frac{L \cdot atm}{K \cdot mol}$$

Therefore: $8.3144 \frac{J}{K \cdot mol} = 0.082057 \frac{L \cdot atm}{K \cdot mol}$ $L \cdot atm = 101.32 J$

$$w = -P(V_{final} - V_{initial})$$

$$w = -(1 \ atm)(0.1L - 0.5L) = +0.4 \ atm \cdot L$$

But atm L is units of energy!?

From inside back of book

$$R = 8.3144 \frac{J}{K \cdot mol} \qquad R = 0.082057 \frac{L \cdot atm}{K \cdot mol}$$

Therefore: $8.3144 \frac{J}{K \cdot mol} = 0.082057 \frac{L \cdot atm}{K \cdot mol}$ $L \cdot atm = 101.32 J$

$$w = +0.4 \ atm \cdot L\left(\frac{101.32 \ J}{atm \cdot L}\right) = 40.53 \ J$$

Energy transferred as heat to system (endothermic) q>0

Energy transferred as heat to system (endothermic) q>0

Energy transferred as heat from system (exothermic) q<0

Energy transferred as heat to system (endothermic) q>0

Energy transferred as heat from system (exothermic) q<0

Energy transferred as heat to system (endothermic) q>0

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system w>0

System internal energy

Energy transferred as heat to system (endothermic) q>0

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system w>0

System internal energy

Energy transferred as heat to system (endothermic) q>0 U \uparrow

Energy transferred as heat from system (exothermic) q<0

Energy transferred as work done on system w>0

System internal energy

Energy transferred as heat to system (endothermic) q>0 U \uparrow

Energy transferred as heat from system (exothermic) q<0 U \downarrow

Energy transferred as work done on system w>0

System internal energy

Energy transferred as heat to system (endothermic) q>0 U \uparrow

Energy transferred as heat from system (exothermic) q<0 U \downarrow

Energy transferred as work done on system ₩>0

System internal energy

Energy transferred as heat to system (endothermic) q>0 U \uparrow

Energy transferred as heat from system (exothermic) q<0 U \downarrow

Energy transferred as work done on system ₩>0

Energy transferred as word done by system $W \not\models Q$

Assume reaction at constant pressure

Assume reaction at constant pressure

$$\Delta U = q_p + w_p$$
$$\Delta U = q_p - P\Delta V$$

$$\therefore \quad q_p = \Delta U + P \Delta V$$

•

Define :
$$H = U + PV$$

 $\therefore \Delta H = \Delta U + P\Delta V$

$$\therefore \Delta H = q_p$$

Assume reaction at constant pressure

$$\Delta U = q_p + w_p$$
$$\Delta U = q_p - P\Delta V$$

Bottom line: almost all of biology occurs at 1 atm pressure (constant)

$$\therefore \quad q_p = \Delta U + P \Delta V$$

Define :
$$H = U + PV$$

 $\therefore \Delta H = \Delta U + P\Delta V$

$$\therefore \Delta H = q_p$$

Assume reaction at constant pressure

$$\Delta U = q_p + w_p$$
$$\Delta U = q_p - P\Delta V$$

$$\cdot \quad q_p = \Delta U + P \Delta V$$

Bottom line: almost all of biology occurs at 1 atm pressure (constant)

 ΔH is a useful measure of the change in energy of a system

Define :
$$H = U + PV$$

 $\therefore \Delta H = \Delta U + P\Delta V$

$$\therefore \Delta H = q_p$$

Energy is a **State Function**

A state function defines a system independent of "how you got there"

State Functions:

Energy $(\Delta U, \Delta H)$ Pressure Volume Temperature Elevation Your bank balance NOT State Functions: Driving distance to Boston Q W

Enthalpy (ΔH) of a reaction

 $H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g) \qquad \Delta H^\circ = +241.8 \text{ kJ/mole-rxn}$

What does this tell us?

 Δ H>0 endothermic.

Have to put **energy in (heat)** to make the reaction go to the right as written

241.8 per mole as written (per 1 H_2 0 consumed, or per 1 H_2 produced)

Enthalpy (ΔH) of a reaction

∆H°=+241.8 kJ/mole-rxn

Enthalpy (Δ H) of a reaction H₂O (g) \rightarrow H₂ (g) + $\frac{1}{2}O_2$ (g) Δ H°=+241.8 kJ/mole-rxn

Enthalpy (Δ H) of a reaction H₂O (g) \rightarrow H₂ (g) + $\frac{1}{2}O_2$ (g) Δ H°=+241.8 kJ/mole-rxn

What is ΔH° for

 $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$

Enthalpy (ΔH) of a reaction

 $\mathrm{H_{2}O}\left(g\right)\longrightarrow\mathrm{H_{2}}\left(g\right)\ +\ \frac{1}{2}\,\mathrm{O_{2}}\left(g\right)$

What is ΔH° for

 $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$

Enthalpy (ΔH) of a reaction

 $\mathrm{H_2O}~(\mathrm{g}) \longrightarrow \mathrm{H_2}~(\mathrm{g}) \ + \ \frac{1}{2}~\mathrm{O_2}~(\mathrm{g})$

What is ΔH° for

 $2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$

$H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$	Δ H°=+241.8 kJ/mole-rxn
$H_2O(g) \longrightarrow H_2(g) + \frac{1}{2}O_2(g)$	ΔH° =+241.8 kJ/mole-rxn
$2H_2O(g) \longrightarrow 2H_2(g) + O_2(g)$	ΔH° =+2(241.8 kJ/mole-rxn)
	∆H°=+483.6 kJ/mole-rxn

Chemical Equation Accounting/Math $C(s) + O_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g)$ $\Delta H^\circ = -110.5 \text{ kJ/mol}$ $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -283.0 \text{ kJ/mol}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = ?? \text{ kJ/mol}$

Chemical Equation Accounting/Math $C(s) + O_2(g) \rightarrow CO(g) + \frac{1}{2}O_2(g)$ $\Delta H^\circ = -110.5 \text{ kJ/mol}$ $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -283.0 \text{ kJ/mol}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -393.5 \text{ kJ/mol}$

Chemical Equation Accounting/Math $C(s) + O_2(g) \rightarrow OO(g) + \frac{1}{2}O_2(g)$ $\Delta H^\circ = -110.5 \text{ kJ/mol}$ $OO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -283.0 \text{ kJ/mol}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -393.5 \text{ kJ/mol}$

Chemical Equation Accounting/Math $C(s) + O_2(g) \rightarrow OO(g) + \frac{1}{2}O_2(g)$ $\Delta H^\circ = -110.5 \text{ kJ/mol}$ $OO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -283.0 \text{ kJ/mol}$ $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta H^\circ = -393.5 \text{ kJ/mol}$

 $\frac{C(s) + O_2(g) \longrightarrow CO(g) + \frac{1}{2}O_2(g)}{C(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)}$ $\frac{CO(g) + \frac{1}{2}O_2(g) \longrightarrow CO_2(g)}{C(s) + O_2(g) \longrightarrow CO_2(g)}$

 ΔH° = -110.5 kJ/mol ΔH° = -283.0 kJ/mol

 ΔH° = -393.5 kJ/mol

(a) The formation of CO_2 can occur in a single step or in a succession of steps. $\Delta_r H^\circ$ for the overall process is -393.5 kJ, no matter which path is followed.

(b) The formation of $H_2O(\ell)$ can occur in a single step or in a succession of steps. $\Delta_r H^\circ$ for the overall process is -285.8 kJ, no matter which path is followed.

@ Brooks/Cole, Cengage Learning

Fig. 5-16, p. 234

Phase Change!

(b) The formation of $H_2O(\ell)$ can occur in a single step or in a succession of steps. $\Delta_r H^\circ$ for the overall process is -285.8 kJ, no matter which path is followed.

@ Brooks/Cole, Cengage Learning

Fig. 5-16, p. 234

Energy level diagram for the decomposition of $CaCO_3(s)$

A Closer Look, p. 238

© Brooks/Cole, Cengage Learning

 ΔH_{f}°

Standard enthalpies of formation Appendix L – page A29

 ΔH°_{f}

Standard enthalpies of formation Appendix L – page A29

 $\Delta {\rm H^{o}}_{\rm f}$

Standard enthalpies of formation Appendix L – page A29

cis-2-butene

trans-2-butene

1-butene

Study Question #101, p. 252

TABLE 2 Energy Released by Combustion of Fossil Fuels

Substance	Energy Released (kJ/g)	
Coal	29-37	
Crude petroleum	43	
Gasoline (refined petroleum)	47	
Natural gas (methane)	50	

@ Brooks/Cole, Cengage Learning

TABLE 1 Producing Electricity in the United States (2006)

Coal	50%
Nuclear	19%
Natural gas	19%
Hydroelectric	7%
Petroleum	3%
Other renewables	2%

@ Brooks/Cole, Cengage Learning

TABLE 3 Types of Coal

Consistency	Sulfur Content	Heat Content (kJ/g)
Very soft	Very low	28-30
Soft	High	29–37
Hard	Low	36-37
	Very soft Soft	Very soft Very low Soft High

© Brooks/Cole, Cengage Learning

...

(a) Methane hydrate burns as methane gas escapes from the solid hydrate. (b) Methane hydrate consists of a lattice of water molecules with methane molecules trapped in the cavity.

@ Brooks/Cole, Cengage Learning

Interchapter, Fig. 9, p. 262

@ Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

@ Brooks/Cole, Cengage Learning

Interchapter, Fig. 16, p. 265

Isooctane C₈H₁₈