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2 NaN3 (s) ⟶ 2 Na (s) + 3 N2 (g)

Required to solve this problem”
• PV = nRT
• stoichiometry
• M = m/n

Work backwards: how many moles of N2 are required?
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PTot =
ntot ⋅ R ⋅T

V
=
nN2 + nO2( ) ⋅ R ⋅T

V
=
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V
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V
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