Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

For a reactant or product as a gas, we can use pressure $\left(P_{\mathrm{x}}\right)$ in the equation for a reaction

Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

For a reactant or product as a gas, we can use pressure $\left(P_{\mathrm{x}}\right)$ in the equation for a reaction

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

For a reactant or product as a gas, we can use pressure $\left(P_{\mathrm{x}}\right)$ in the equation for a reaction

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags
How much NaN_{3} is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

For a reactant or product as a gas, we can use pressure $\left(P_{\mathrm{x}}\right)$ in the equation for a reaction

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags
How much NaN_{3} is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Work backwards: how many moles of N_{2} are required?

Gases and Chemical Reactions

For a reactant or product in solution, we can use [concentration] in the equation for a reaction

For a reactant or product as a gas, we can use pressure $\left(P_{\mathrm{x}}\right)$ in the equation for a reaction

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags How much NaN_{3} is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Work backwards: how many moles of N_{2} are required?

$$
n=\frac{P V}{R T}=\frac{(1.1 \mathrm{~atm})(45.5 L)}{\left(0.0820 \cdot L \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(22+273) \mathrm{K}}=2.05 \mathrm{~mol} \mathrm{~N}_{2}
$$

Gases and Chemical Reactions

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags
How much $\mathrm{NaN}_{3}(\mathrm{~g})$ is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Work backwards: how many moles of N_{2} are required?

$$
n=\frac{P V}{R T}=\frac{(1.1 \mathrm{~atm})(45.5 L)}{\left(0.0820 \cdot L \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(22+273) K}=2.05 \mathrm{~mol} \mathrm{~N}
$$

Gases and Chemical Reactions

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags
How much $\mathrm{NaN}_{3}(\mathrm{~g})$ is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Work backwards: how many moles of N_{2} are required?

$$
n=\frac{P V}{R T}=\frac{(1.1 \mathrm{~atm})(45.5 L)}{\left(0.0820 \cdot L \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(22+273) K}=2.05 \mathrm{~mol} \mathrm{~N}
$$

Stoichiometry: need $\left(\frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}}\right) 2.05 \mathrm{~mol} \mathrm{~N} \mathrm{~N}_{2}=1.37 \mathrm{~mol} \mathrm{NaN}$

Gases and Chemical Reactions

$$
2 \mathrm{NaN}_{3}(\mathrm{~s}) \longrightarrow 2 \mathrm{Na}(\mathrm{~s})+3 \mathrm{~N}_{2}(\mathrm{~g})
$$

This is the reaction used to inflate air bags
How much $\mathrm{NaN}_{3}(\mathrm{~g})$ is needed to inflate a 45.5 L air bag to 1.1 atm at $22^{\circ} \mathrm{C}$ (room temperature)?

Work backwards: how many moles of N_{2} are required?

$$
n=\frac{P V}{R T}=\frac{(1.1 \mathrm{~atm})(45.5 L)}{\left(0.0820 \cdot L \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(22+273) \mathrm{K}}=2.05 \mathrm{~mol} \mathrm{~N}
$$

Stoichiometry: need $\left(\frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}}\right)^{2.05 \mathrm{~mol} \mathrm{~N}_{2}=1.37 \mathrm{~mol} \mathrm{NaN}_{3}}$
Convert with molar mass: $\left(1.37 \mathrm{~mol} \mathrm{NaN}_{3}\right)\left(65.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)=89 \mathrm{~g} \mathrm{NaN}$

Gases and Chemical Reactions

$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
Required to solve this problem"

- $P V=n R T$
- stoichiometry
- $M=m / n$

Work backwards: how many moles of N_{2} are required?

$$
n=\frac{P V}{R T}=\frac{(1.1 \mathrm{~atm})(45.5 L)}{\left(0.0820 \cdot L \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1}\right)(22+273) \mathrm{K}}=2.05 \mathrm{~mol} \mathrm{~N}_{2}
$$

Stoichiometry: need $\left(\frac{2 \mathrm{~mol} \mathrm{NaN}_{3}}{3 \mathrm{~mol} \mathrm{~N}_{2}}\right)^{2.05 \mathrm{~mol} \mathrm{~N}_{2}=1.37 \mathrm{~mol} \mathrm{NaN}_{3}}$
Convert with molar mass: $\left(1.37 \mathrm{~mol} \mathrm{NaN}_{3}\right)\left(65.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right)=89 \mathrm{~g} \mathrm{NaN}$

Mixture of gases - Partial pressures Mixture of N_{2} and O_{2}

$$
P_{N_{2}}+P_{O_{2}}
$$

Mixture of gases - Partial pressures

Mixture of N_{2} and O_{2}

$P_{N_{2}}$

$P_{N_{2}}+P_{O_{2}}$

Mixture of gases - Partial pressures

 Mixture of N_{2} and O_{2}
$P_{N_{2}}$

$P_{O_{2}}$

$P_{N_{2}}+P_{O_{2}}$

Mixture of gases - Partial pressures

 Mixture of N_{2} and O_{2}

Mixture of gases - Partial pressures

 Mixture of N_{2} and $\mathrm{O}_{2}$$$
\begin{aligned}
& \left.\left.\left.\begin{array}{|lll}
0 & & 0 \\
0 & 0 & 0 \\
0 & 0
\end{array}\right]+\begin{array}{|lll}
0 & 0 & \\
0 & 0
\end{array}\right] \begin{array}{|lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& P_{N_{2}}+P_{O_{2}}=P_{N_{2}}+P_{O_{2}}=P_{\text {Total }}
\end{aligned}
$$

Mixture of gases - Partial pressures

Mixture of N_{2} and O_{2}

$$
\begin{aligned}
& P_{\text {Tot }}=\frac{n_{\text {tot }} \cdot R \cdot T}{V}=\frac{\left(n_{N_{2}}+n_{O_{2}}\right) \cdot R \cdot T}{V}=\frac{n_{N_{2}} \cdot R \cdot T}{V}+\frac{n_{O_{2}} \cdot R \cdot T}{V}=P_{N_{2}}+P_{O_{2}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$\mathrm{T}=298 \mathrm{~K}$

The He and Xe atoms have:

1) the same average velocities
2) the same average kinetic energies
3) (1) and (2)
4) neither

Kinetic-Molecular Theory of Gases

$\mathrm{T}=298 \mathrm{~K}$

The He and Xe atoms have:

1) the same average velocities
2) the same average kinetic energies
3) (1) and (2)
4) neither

Kinetic-Molecular Theory of Gases

$\mathrm{T}=298 \mathrm{~K}$

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

$$
K . E .=\frac{1}{2} m v^{2}
$$

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

$$
m_{H e} v_{H e}^{2}=m_{X e} v_{X e}^{2}
$$

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

Choose:

1) Xe atoms have higher average speeds
2) He atoms have higher average speeds
3) He and Xe have the same speeds

Kinetic-Molecular Theory of Gases

$$
\begin{gathered}
K . E .=\frac{1}{2} m v^{2} \\
m_{H e} v_{H e}^{2}=m_{x e} v_{X e}^{2}
\end{gathered}
$$

Kinetic-Molecular Theory of Gases

$$
\begin{aligned}
& K . E .=\frac{1}{2} m v^{2} \\
& m_{H e} v_{H e}^{2}=m_{X e} v_{X e}^{2} \\
& m_{H e} \overline{v_{H e}^{2}}=m_{X e} \overline{v_{X e}^{2}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$$
K . E .=\frac{1}{2} m v^{2}
$$

Kinetic-Molecular Theory of Gases

$$
\begin{aligned}
& \text { K.E. }=\frac{1}{2} m v^{2} \\
& m_{H e} v_{H e}^{2}=m_{X e} v_{X e}^{2} \\
& m_{H e} \overline{v_{H e}^{2}}=m_{X e}, \quad \text { The average of the square of the velocities } \\
& \sqrt{m_{H e}} \sqrt{\overline{v_{H e}^{2}}}=\sqrt{m_{X e}} \sqrt{\overline{v_{X e}^{2}}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$$
\begin{aligned}
& K . E .=\frac{1}{2} m v^{2} \\
& m_{H e} \overline{v_{H e}^{2}}=m_{X e}^{2} v_{X e}^{2} \\
& \sqrt{m_{H e}} \sqrt{\overline{v_{H e}^{2}}}=\sqrt{m_{X e}^{2}} \sqrt{\overline{v_{X e}^{2}}} \\
& \frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{v_{H e}^{2}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$$
\begin{aligned}
& K . E .=\frac{1}{2} m v^{2} \\
& m_{H e} \overline{v_{H e}^{2}}=m_{X e} v_{H e}^{2}=m_{X e} v_{X e}^{2} \\
& \sqrt{m_{H e}} \sqrt{\overline{v_{H e}^{2}}}=\sqrt{m_{X e}} \sqrt{\overline{v_{X e}^{2}}} \\
& \begin{array}{l}
\text { The square root of the average } \\
\text { of the square of the velocities }
\end{array} \\
& \sqrt{\frac{1}{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}^{2}}}{\sqrt{m_{X e}}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$$
\begin{aligned}
& K . E .=\frac{1}{2} m v^{2} \\
& m_{H e} v_{H e}^{2}=m_{X e} v_{X e}^{2} \\
& \text { The square root of the average } \\
& \text { of the square of the velocities } \\
& \sqrt{m_{H e}} \sqrt{\overline{v_{H e}^{2}}}=\sqrt{m_{X e}} \sqrt{\overline{v_{X e}^{2}}} \\
& \left.\begin{array}{c}
\text { "Root mean squared velocity } \\
\text { (rms velocity) }
\end{array}\right) \frac{\sqrt{v_{X e}^{2}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
\end{aligned}
$$

Kinetic-Molecular Theory of Gases

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

A short time after the hole opens, the right side will contain

1) More Xe atoms than He
2) More He atoms than Xe
3) The same amount of each

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

A short time after the hole opens, the right side will contain

1) More Xe atoms than He
2) More He atoms than Xe
3) The same amount of each

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}<1
$$

$$
\sqrt{\overline{v_{H e}^{2}}}>\sqrt{\overline{v_{X e}^{2}}}
$$

Kinetic-Molecular Theory of Gases

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

A long time after the hole opens, the right side will contain

1) More Xe atoms than He
2) More He atoms than Xe
3) The same amount of each

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

A long time after the hole opens, the right side will contain

1) More Xe atoms than He
2) More He atoms than Xe
3) The same amount of each

$$
\frac{\sqrt{\overline{v_{X e}^{2}}}}{\sqrt{\overline{v_{H e}^{2}}}}=\frac{\sqrt{m_{H e}}}{\sqrt{m_{X e}}}
$$

Kinetic-Molecular Theory of Gases

