\qquad

Chem 111

2:30p section
Evening Exam \#2
This exam is composed of 25 questions, 1 of which requires mathematics that might require a calculator. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$=h v=\frac{h c}{\lambda}$	Some common ions:			$\begin{aligned} & h=6.626 \times 10^{-34} \mathrm{Js} \\ & c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$
$R_{H} h c$	$\mathrm{PO}_{4}{ }^{3-}$	CN^{-}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	
$E_{n}^{H-\text { atom }}=-\frac{\Lambda_{H} \pi}{n^{2}}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$		$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
H 1.008																	$\stackrel{2}{\mathrm{He}}$
$\mathbf{L i}$ 6.939	$\begin{array}{\|l\|} \hline 4 \\ \mathbf{B e} \end{array}$ 9.012											$\begin{array}{\|l\|} \hline 5 \\ \hline \end{array}$ 10.81	${ }^{6}$ C 12.0	$\begin{array}{\|c} \hline 7 \\ \mathrm{~N} \\ 14.01 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{8} \\ \mathbf{O} \\ 16.00 \\ \hline \end{array}$	$\begin{aligned} & \hline 9 \\ & \mathbf{F} \\ & \hline 19.00 \end{aligned}$ 19.00	$\begin{aligned} & { }^{10} \\ & \mathrm{Ne} \\ & 20.18 \end{aligned}$
$\begin{aligned} & 11 \\ & \mathbf{N a} \\ & \mathbf{N a} \\ & \hline 22.99 \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ \mathbf{M g} \\ \hline \end{array}$											$\begin{array}{\|l\|} \hline 13 \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ \mathbf{S i} \\ 28.09 \end{array}$	15$\mathbf{P}$$\mathbf{P}$ 30.97	$\begin{array}{\|l\|} \hline 16 \\ \text { S } \\ \text { 32.077 } \\ \hline \end{array}$	$\begin{aligned} & 17 \\ & \hline \mathbf{C l} \\ & 35.45 \end{aligned}$	$\begin{aligned} & 18 \\ & \text { Ar } \\ & \text { Ar } \\ & 39.95 \end{aligned}$
$\stackrel{19}{\mathbf{K}}$	$\begin{array}{\|l\|} \hline 20 \\ \mathrm{Ca} \\ \hline 40.08 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{2 1}_{\mathbf{S c}} \end{aligned}$ 44.96	$\stackrel{22}{\mathbf{T i}}$ 47.90	$\stackrel{23}{\mathbf{V}}$	$\stackrel{i}{24}_{24}^{24}$	$\begin{array}{\|l\|} \hline 25 \\ \mathbf{M n} \\ 54,94 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 26 \\ \mathbf{F e} \\ 55.85 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ \mathbf{C o} \\ \hline 58.93 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 28 \\ \mathbf{N i} \\ 58.71 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 29 \\ \mathbf{C u} \\ 63.55 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 30 \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{3 1} \\ & \mathbf{G a} \\ & 69.72 \\ & \hline \end{aligned}$	32 $\mathbf{G e}$ 72.61	$\begin{array}{\|l\|l} \hline 33 \\ \text { As } \\ \text { 74.92 } \\ \hline \end{array}$	34 Se		${ }_{\mathbf{K}}^{\mathbf{K} \mathbf{K}}$ Kr 83.80
37 Rb 85.47	$\stackrel{38}{\mathrm{Sr}}$ 87.62	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \\ \hline \end{gathered}$	$\begin{aligned} & \begin{array}{l} 40 \\ \mathbf{Z r} \\ 91.22 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 41 \\ \mathbf{N b} \\ 92.91 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ \hline 95.94 \\ \hline \end{array}$	$\begin{array}{\|l} 43 \\ \mathbf{T c} \end{array}$ $\begin{array}{\|l\|l\|} \hline(99) \\ \hline \end{array}$	$\begin{aligned} & { }^{44} \\ & \mathbf{R u} \\ & 101.1 \end{aligned}$	$\begin{array}{\|l\|} \hline 45 \\ \hline \mathbf{R h} \\ 102.9 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 \\ \mathbf{P d} \\ \hline 106.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 47 \\ \mathbf{A g} \\ 107.9 \\ \hline \end{array}$	$\begin{aligned} & \hline 48 \\ & \text { Cd } \\ & 112.4 \end{aligned}$	$\begin{array}{\|l} \hline 49 \\ \text { In } \\ \text { In } \\ \hline \end{array}$	$\begin{array}{\|l} \hline 50 \\ \text { Sn } \\ \text { Sn } \\ \text { 118.7.7 } \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{5 1} \\ \mathbf{S b} \\ \hline 121.8 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 52 \\ \mathbf{T e} \\ \hline 127.6 \\ \hline \end{array}$	$\begin{gathered} 53 \\ \mathbf{I} \\ \text { 126.9 } \end{gathered}$	$\begin{aligned} & \begin{array}{l} 54 \\ \mathbf{X e} \\ \\ 131.3 \end{array} \\ & \hline \end{aligned}$
$\begin{aligned} & { }^{55} \\ & \text { Cs } \end{aligned}$ 132.9	$\begin{array}{\|l\|} \hline 56 \\ \mathbf{B a} \end{array}$ 137.3	$\begin{aligned} & \hline 57 \\ & \mathrm{La} \end{aligned}$ ${ }^{138.9}$	$\stackrel{72}{\mathbf{H f}}$ 178.5	73 Ta 1810	$\begin{array}{\|c\|} \hline 74 \\ \mathbf{W} \\ 183.8 \\ \hline \end{array}$	75 Re 186.2	$\begin{array}{\|l} \hline 76 \\ \mathbf{O} s \\ \hline \end{array}$	$\stackrel{77}{\mathrm{Ir}}$ 192	$\begin{array}{\|l\|} \hline 78 \\ \mathbf{P t} \end{array}$ 195.1	$\begin{array}{\|l} \hline 79 \\ \mathbf{A u} \\ \hline \end{array}$ 197.0	80 Hg 200.6	${ }^{81}$ 204.4	82 Pb 2072	${ }^{83}$ Bi 209.0	${ }_{8}^{84}$ Po (209)	85 At (210)	$\begin{aligned} & \hline 86 \\ & \mathbf{R n} \end{aligned}$ (222)
$\stackrel{87}{\mathrm{Fr}}$ (223)	$\begin{array}{\|l\|} \hline 88 \\ \mathbf{R a} \\ \hline 226.0 \\ \hline \end{array}$	${ }^{89}$ Ac 227.0	${ }^{104}$ Unq (261)	$\begin{array}{\|l\|} \hline 105 \\ \text { Unp } \\ \hline \end{array}$	106 Unh (263)	107 Uns (262)	$\begin{array}{\|l\|} \hline \text { 108 } \\ \text { Uno } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 109 \\ \text { Une } \\ \hline \end{array}$	1								

1. Which atom or ion below is most paramagnetic?
1) B
2) C
3) N
4) O
5) F
2. Which element is represented by: $1 s^{2} 2 s^{2} 2 p^{6} \mathbf{3} s^{2} \mathbf{3} p^{6} \mathbf{3 d} \mathbf{d}^{\mathbf{1 0}} \mathbf{4} s^{\mathbf{2}} \mathbf{4} \mathrm{p}^{\mathbf{4}}$
1) Ge
2) Sb
3) As
4) Se
5) Te
3. Which of the following has the shortest bond length?
1) $\mathrm{H}_{2} \mathrm{O}$
2) NH_{3}
3) HF
4) CH_{4}
5) BH_{3}
4. Consider the molecule $\mathrm{AsO}_{4}{ }^{\mathrm{x}}$, where x is the charge on the molecule. Three bonds are single bonds, one is a double bond. Which value of x yields the stable molecule? (Hint: draw Lewis structures to figure this one out)
1) +2
2) 0
3) -1
4) -2
5) -3
5. For the $\mathrm{AsO}_{4}{ }^{\mathrm{X}}$ molecule above, how many equal-energy resonance structures can you draw?
1) 1
2) 2
3) 3
4) 4
5) 6
6. Consider the molecule ClF_{2}^{-}How many lone pairs are on the central atom?
1) 1
2) 2
3) 3
4) 4
5) 0
7. Consider the molecule ClF_{5} What is the electron pair geometry?
1) Trigonal bipyramidal
2) Octahedral
3) linear
4) Trigonal planer
5) Tetrahedral
8. Consider the molecule $\mathrm{ClF}_{4}^{-} \quad$ What is the molecular geometry?
1) Square planar
2) Octahedral
3) linear
4) Trigonal planer
5) Tetrahedral
9. Which of the following has the shortest bond length?
1) None
2) SiF_{4}
3) SiCl_{4}
4) SiBr_{4}
5) SiI_{4}
10. Which of the following has the lowest bond energy?
1) None
2) CF_{4}
3) CCl_{4}
4) CBr_{4}
5) CI_{4}
11. Which of the following has the shortest bond length?
1) B_{2}
2) C_{2}
3) N_{2}
4) O_{2}
5) F_{2}
12. The electron pair geometry centered at the O atom in $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ is:
1) Trigonal bipyramidal
2) Octahedral
3) linear
4) Trigonal planer
5) Tetrahedral
\qquad
13. In the symmetrical molecule hydrogen peroxide HOOH , what is the approximate HOO bond angle?
1) 180°
2) 90°
3) 109°
4) 120°
5) 60°
14. What is the molecular geometry of IF_{5} ?
1) trigonal bipyramidal
2) Octahedral
3) square pyramidal
4) trigonal pyramidal
5) Seesaw

Bond Dissociation Energies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$ (gas phase)

Bond	D	Bond	D	Bond	D
H-H	436	C-C	346	N-N	163
C-H	413	C=C	610	N=N	418
N-H	391	O-O	146	C-O	358
O-H	463	O=O	498	C=O	745
C-F	485	F-F	155		

15. Consider the reaction: $\mathrm{CH}_{3} \mathrm{CHCH}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}(\mathrm{~g})$

What is the energy $\left(\Delta \mathrm{H}^{\circ}\right.$, in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ for this reaction?

1) -220
2) +220
3) -126
4) -205
5) -551
\qquad
16. Which of the following has the highest effective nuclear charge as seen by its outermost valence electrons?
1) Br
2) Ne
3) S
4) F
5) N
17. Which of the following has the highest effective nuclear charge as seen by its outermost valence electrons?
1) Cl^{-}
2) Ar
3) K^{+}
4) Ca^{2+}
5) Ca
18. Which of the following has the highest electron affinity?
1) Al
2) Si
3) P
4) S
5) Cl
19. From which species below is it easiest to remove an electron?
1) O^{2-}
2) F^{-}
3) Ne
4) Na^{+}
5) Mg^{2+}
20. Which ion has the largest radius?
1) Al^{3+}
2) Ca^{2+}
3) In^{3+}
4) Cs^{+}
5) Tl^{3+}
21. What is the formal charge on C in

1) -2
2) -1
3) 0
4) +1
5) +2
22. What is the overall charge on the species

1) -2
2) -1
3) 0
4) +1
5) +2
\qquad
23. Consider benzene
 in all of its resonance forms. What is the $\mathrm{C}-\mathrm{C}$ bond order?
1) 0
2) 0.5
3) 1.0
4) 1.5
5) 2
24. Which of the following molecules is most polar?
1) CF_{4}
2) CH_{4}
3) $\mathrm{CF}_{3} \mathrm{H}$
4) CBr_{4}
5) $\mathrm{CBr}_{3} \mathrm{H}$
25. What is the catalog number for this class?
1) 111
2) 123
3) 222
4) 3.14159
5) 68.6 g
