\qquad

This exam is composed of 25 questions, 1 of which requires mathematics that might require a calculator. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} \mathrm{Js}$	
$E_{n}^{H-\text { atom }}=-\frac{R_{H} h c}{n^{2}}$	$\mathrm{PO}_{4}{ }^{3-}$	CN^{-}	$\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}$	$c=2.9998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$\mathrm{NO}_{2}{ }^{-}$	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$		

PERIODIC TABLE OF THE ELEMENTS

1 A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
1 H 1.008																	2 He 4.003
3 $\mathbf{L i}$ 6.939	4 Be 9.012											$\begin{aligned} & 5 \\ & \mathbf{B} \\ & 10.81 \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{6} \mathrm{C} \\ & 12.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 \\ & \mathbf{N} \\ & 14.01 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & 16.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 9 \\ & \mathbf{F} \\ & 19.00 \\ & \hline \end{aligned}$	10 Ne 20.18
11 Na 22.99	$\begin{aligned} & 12 \\ & \mathbf{M g} \\ & 24.31 \\ & \hline \end{aligned}$											$\begin{aligned} & 13 \\ & \mathbf{A l} \\ & 26.98 \\ & \hline \end{aligned}$	14 Si 28.09	15 P 30.97	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.07 \\ \hline \end{gathered}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & \hline 35.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \\ & \mathbf{A r} \\ & \mathbf{3 9 . 9 5} \\ & \hline \end{aligned}$
$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \\ \hline \end{gathered}$	$\begin{aligned} & 20 \\ & \text { Ca } \\ & 40.08 \\ & \hline \end{aligned}$	$\begin{aligned} & 21 \\ & \mathrm{Sc} \\ & \mathbf{4 4 . 9 6} \\ & \hline \end{aligned}$	22 Ti 47.90	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \\ \hline \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{C} \text { r } \\ & 52.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	$\begin{aligned} & 27 \\ & \mathrm{Co} \\ & \mathbf{5 8 . 9 3} \\ & \hline \end{aligned}$	28 Ni 58.71	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & 63.55 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & 65.39 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{3 1} \\ & \mathbf{G a} \\ & \mathbf{6 9 . 7 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & \mathbf{G e} \\ & \hline 72.61 \\ & \hline \end{aligned}$	33 As 74.92	34 Se 78.96	$\begin{aligned} & 35 \\ & \mathbf{B r} \\ & \hline \mathbf{7 9 . 9 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \\ & \mathbf{8 3 . 8 0} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathbf{3 7} \\ & \mathbf{R b} \\ & 85.47 \\ & \hline \end{aligned}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \\ & \mathbf{8 7 . 6 2} \\ & \hline \end{aligned}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ \mathbf{8 8 . 9 1} \\ \hline \end{gathered}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & 91.22 \\ & \hline \end{aligned}$	$\begin{aligned} & 41 \\ & \mathrm{Nb} \\ & 92.91 \\ & \hline \end{aligned}$	$\begin{aligned} & 42 \\ & \mathbf{M o} \\ & 95.94 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{4 3} \\ & \mathbf{T c} \\ & (99) \\ & \hline \end{aligned}$	$\begin{aligned} & 44 \\ & \mathbf{R u} \\ & 101.1 \\ & \hline \end{aligned}$	45 Rh 102.9	$\begin{aligned} & 46 \\ & \text { Pd } \\ & 106.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 47 \\ & \mathbf{A g} \\ & 107.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & \mathrm{Cd} \\ & 112.4 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \\ & 114.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{5 0} \\ & \text { Sn } \\ & 118.7 \\ & \hline \end{aligned}$	51 Sb 121.8	52 Te 127.6	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.9 \\ \hline \end{gathered}$	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	$\begin{aligned} & 73 \\ & \mathrm{Ta} \\ & 181.0 \\ & \hline \end{aligned}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.8 \\ \hline \end{gathered}$	75 Re 186.2	$\begin{aligned} & 76 \\ & \text { Os } \\ & 190.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 77 \\ & \text { Ir } \\ & \mathbf{1 9 2 . 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 78 \\ & \mathbf{P t} \\ & 195.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \\ & 197.0 \\ & \hline \end{aligned}$	80 $\mathbf{H g}$ 200.6	81 Tl 204.4	82 $\mathbf{P b}$ 207.2	83 Bi 209.0	$\begin{aligned} & 84 \\ & \mathbf{P o} \\ & (209) \\ & \hline \end{aligned}$	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	105 Unp (262)	106 Unh (263)	107 Uns (262)	108 Uno (265)	109 Une (266)									

1. Which atom or ion below is most paramagnetic?
1) Be
2) B
3) C
4) N
5) O
(OWL question)
2. Which element is represented by: $\mathbf{1} \mathbf{s}^{\mathbf{2}} \mathbf{2} \mathrm{s}^{\mathbf{2}} \mathbf{2} \mathbf{p}^{\mathbf{6}} \mathbf{3} \mathrm{s}^{\mathbf{2}} \mathbf{3} \mathrm{p}^{\mathbf{6}} \mathbf{3} \mathrm{d}^{\mathbf{1 0}} \mathbf{4} \mathrm{s}^{\mathbf{2}} \mathbf{4} \mathrm{p}^{\mathbf{3}}$
1) Ge
2) Sb
3) As
4) Se
5) Te
(3) See p297 to check, but you can read this off the organization of the periodic table. [Note this question was in error as administered - everyone will get full credit for this question]
3. Which of the following has the shortest bond length?
1) $\mathrm{H}_{2} \mathrm{~S}$
2) AlH_{3}
3) PH_{3}
4) SiH_{4}
5) HCl
(5) Cl is smallest of $\mathrm{S}, \mathrm{Al}, \mathrm{Cl}, \mathrm{Si}$, and P . This allows H and Cl to approach closest, given that all are single bonds.
4. Consider the molecule $\mathrm{SiO}_{3}{ }^{\mathrm{X}}$, where x is the charge on the molecule. Two bonds are single bonds, one is a double bond. Which value of x yields the stable molecule? (Hint: draw Lewis structures to figure this one out)
1) +2
2) 0
3) -1
4) -2
5) -3
(4)

5. For the $\mathrm{SiO}_{3}{ }^{\mathrm{X}}$ molecule above, how many equal-energy resonance structures can you draw?
1) 1
2) 2
3) 3
4) 4
5) 6
6. Consider the molecule ClF_{3} How many lone pairs are on the central atom?
1) 1
2) 2
3) 3
4) 6
5) 0

\qquad
7. Consider the molecule $\mathrm{ClF}_{4}^{-} \quad$ What is the electron pair geometry?
1) Trigonal bipyramidal
2) Octahedral
3) linear
4) Trigonal planer
5) Tetrahedral
(2)

8. Consider the molecule ClF_{5} What is the molecular geometry?
1) Trigonal bipyramidal
2) Octahedral
3) linear
4) square pyramidal
5) Tetrahedral
(4)

9. Which of the following has the longest bond length?
1) None
2) CF_{4}
3) CCl_{4}
4) CBr_{4}
5) CI_{4}
(5) I is largest of $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I} \quad \mathrm{OWL} 9-\mathrm{xx}$
10. Which of the following has the highest bond energy?
1) None
2) SiF_{4}
3) SiCl_{4}
4) SiBr_{4}
5) SiI_{4}
(2) - shortest bond, strongest bond
OWL 9-xx
11. Which of the following has the shortest bond length?
1) C_{2}
2) N_{2}
3) O_{2}
4) F_{2}
5) B_{2}
(2) N_{2} - triple bond OWL $9-x x$
12. The electron pair geometry centered at the O atom in $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is:
1) Trigonal bipyramidal
2) Octahedral
3) linear
4) Trigonal planer
5) Tetrahedral
(4) Tetrahedral
13. In the molecule formaldehyde $\mathrm{CH}_{2} \mathrm{O}$, what is the approximate HCO bond angle?
1) 180°
2) 90°
3) 109°
4) 120°
5) 60°
(4) $\stackrel{H}{C}_{+}^{+}=0$ trigonal planar at the C
14. What is the molecular geometry of KrF_{4} ?
1) trigonal bipyramidal
2) Octahedral
3) square pyramidal
4) trigonal pyramidal
5) Square planar
(5) - See Figure 9.11

$$
\text { Bond Dissociation Energies }\left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \quad \text { (gas phase) }
$$

Bond	D	Bond	D	Bond	D
H-H	436	C-C	346	N-N	163
C-H	413	C=C	610	N=N	418
N-H	391	O-O	146	C-O	358
O-H	463	O=O	498	C=O	745
C-F	485	F-F	155		

15. Consider the reaction: $\mathrm{CH}_{3} \mathrm{CHCH}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3}(\mathrm{CFH})\left(\mathrm{CH}_{2} \mathrm{~F}\right)(\mathrm{g})$

What is the energy $\left(\Delta \mathrm{H}^{\circ}\right.$, in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ for this reaction?

1) -220
2) +220
3) -126
4) -205
5) -551
(5)

$$
\begin{aligned}
& \Delta H^{\circ}=(\text { Bonds Broken })-(\text { Bonds Formed }) \\
& \Delta H^{\circ}=\left(D_{C=C}+D_{F-F}\right)-\left(2 D_{C-F}\right)-D_{C-C}=(610+155)-2(485)-346=-551 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

16. Which of the following has the highest effective nuclear charge as seen by its outermost valence electrons?
1) Br
2) N
3) S
4) F
5) Ge (4) F
17. Which of the following has the highest effective nuclear charge as seen by its outermost valence electrons?
1) Cl^{-}
2) Ar
3) K^{+}
4) Ar^{-}
5) K
(3) K^{+}The first three are isoelectronic, 3p valence electrons
18. Which of the following has the highest electron affinity?
1) Cl
2) S
3) P
4) Si
5) Al
(1)
19. From which species below is it easiest to remove an electron?
1) Mg^{2+}
2) Na^{+}
3) Ne
4) F^{-}
5) O^{2-}
(5)
20. Which ion has the smallest radius?
1) Al^{3+}
2) Ca^{2+}
3) In^{3+}
4) Cs^{+}
5) Tl^{3+}
(1)
21. What is the formal charge on C in

1) -2
2) -1
3) 0
4) +1
5) +2
(3)
22. What is the overall charge on the species $[: \ddot{s}-\ddot{c}-\ddot{c}:!]$?
1) -2
2) -1
3) 0
4) +1
5) +2
(2)
23. Consider benzene
 in all of its resonance forms. What is the $\mathrm{C}-\mathrm{C}$ bond order?
1) 0.5
2) 1.0
3) 1.5
4) 2.0
5) 2.5
(3)
24. Which of the following molecules is most polar?
1) CH_{4}
2) $\mathrm{CF}_{3} \mathrm{H}$
3) CF_{4}
4) CBr_{4}
5) $\mathrm{CBr}_{3} \mathrm{H}$
(2)
25. What is the catalog number for this class?
1) 123
2) 111
3) 222
4) $3.14159 \quad$ 5) 68.6 g
(2)
