Electrophoretic Light Scattering Study of Counterion Condensation on Polylysine

Jiuling Xia,∗‡ Paul L. Dubin, and Henry A. Havel†

Department of Chemistry, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46205

Received May 2, 1993; Revised Manuscript Received September 13, 1993,*

ABSTRACT: Electrophoretic light scattering was used to study the electrophoretic mobility of polylysine as a function of pH in both NaCl and phosphate buffer solutions at an ionic strength of 0.01 M. Results are interpreted in terms of the counterion condensation theory. It is concluded that this theory may be qualitatively correct, but its application to the calculation of the electrophoretic mobility is not yet quantitatively satisfied.

Introduction

The counterion condensation theory1-3 of Manning describes the association of electrolytes with polyelectrolytes in salt solution. One consequence of this theory is the prediction that the electrophoretic mobility of the polyelectrolyte is inversely proportional to the valence of the counterion. Therefore, electrophoretic mobility measurements can provide experimental proof of the theory. Polylysine in particular has been the subject of several previous studies, but the data do not yield an unambiguous interpretation.

Previous quasielastic light scattering (QELS) and electrophoretic light scattering (ELS) studies of polylysine have focused on the ionic strength dependence of the diffusivity or mobility in the low salt regime. Dynamic light scattering of polylysine in dilute univalent salt solutions4-6 has established the existence of so-called ordinary and extraordinary phases under different salt concentrations. The apparent diffusion coefficient, Dpp, was found to first rise and then dramatically drop by over an order of magnitude with decreasing salt concentration (C). The onset of this drop in Dpp occurs at C, on the order of several millimolar, below which the system is said to be in the "extraordinary phase". By using electrophoretic light scattering (ELS), Wilcoxon and Schurr7 showed different behavior of the electrophoretic mobility for polylysine in the two different phases and a molecular weight dependence of the mobility in the range 0 < C < 0.1 M. However, the electrophoretic mobility reported by Zero and Ware8 showed no anomalous behavior through the extraordinary to ordinary phase transition. Wilcoxon and Schurr’s results are consistent with counterion condensation theory at C = 0.1 M, but not at salt concentrations less than 0.1 M. Schurr’s mobility data at C < 0.1 M are about 3 times larger than those of Ware.

In the present paper, we examine the pH dependence of the electrophoretic mobility of polylysine in both 0.01 M NaCl and phosphate buffer solutions with the same ionic strength (0.01 M). The experimental results are compared with Manning’s counterion condensation theory.

Experimental Section

Materials. Two polylysine samples were from Sigma with weight average molecular weights (Mw) of 6.7 × 104 and 5.9 × 104, respectively. The polydispersity of each sample (Mw/Mz) was 1.1. NaCl, NaH2PO4, Na2HPO4, and Na2PO4 were all analytical grade from Sigma. All water was deionized and distilled. All solutions were prepared dust-free by filtering through Gelman 0.2-μm syringe filters. Phosphate buffer solutions were prepared by mixing monobasic and dibasic phosphate salts or dibasic and tribasic phosphate salts to the desired pH in such a way as to maintain constant I = 0.01 M.

Electrophoretic Light Scattering. ELS measurements were made at four scattering angles (6.6, 17.1, 25.6, and 34.2°), using a Coulter (Hialeah, Florida) DELSA 440 apparatus. The light source was a He–Ne laser (λ = 632.8 nm). The electric field was applied at a constant current of 1.5 mA. The temperature of the thermostated chamber was maintained at 25°C. The sample chamber has a total volume of about 1 mL. A rectangular channel runs through a 5-mm thickness of the insert, connecting the hemispherical cavities in each electrode. Electroosmotic corrections were determined by measuring the spatial flow profile in the chamber and taking the mobility readings at a distance 16% of the rectangular length from the respective walls of the chamber. This procedure was verified by using the DELSA electrophoretic mobility standard.

In ELS, the photon-counting heterodyne correlation function for a solution with an electrophoretically monodisperse solute can be written as9

\[C(r) = \beta_0 \delta(r) + a_0 + a_1 \exp(-2Dk^2r) + a_2 \exp(-Dk^2r) \cos(\omega t) \]

where \(\beta_0, a_0, a_1, a_2 \) are constants independent of correlation time, \(r \), and \(\delta(r) \) is the delta function. \(k \) is the amplitude of the scattering vector, given by \(k = (4\pi/\lambda) \sin(\theta/2) \), where \(n \) is the refractive index of the medium, \(\lambda \) is the wavelength of the excitation light in a vacuum, and \(\theta \) is the scattering angle. \(D \) is the diffusion coefficient. The cosine term is due to simultaneous electroosmosis and diffusion.

The Fourier transform of eq 1 with respect to time, as stipulated by the Weiner–Khinchine theorem,10 gives the power spectrum:

\[S(\omega) = \beta_0 + a_0 \omega + \frac{2\omega}{\omega^2 + (2Dk^2)^2} + \frac{a_1Dk^2}{2\pi} \]

\[\left[\frac{1}{\omega + \omega_s} + \frac{1}{\omega - \omega_s} + (Dk^2)^2 \right] \]

where \(\alpha \) is a constant independent of \(\omega \).

In both eqs 1 and 2, \(\omega_s \) is the difference between the angular frequency of the scattered light, \(\omega_s \), and that of the reference beam, \(\omega_r \), which is the same as that of the incident beam. Since the frequency of the incident beam is modulated in the scattered light by the amount of the Doppler shift frequency, \(\Delta \omega \) is given by

\[\Delta \omega = \frac{2\pi}{\lambda} EU \sin \theta \]

where \(E \) (V/cm) and \(U \) (μm s⁻¹)/(V cm⁻¹) are the applied electric...
The mobilities of free-draining polyelectrolytes should be independent of molecular weight. In support of this, identical mobility is observed for the two different MW polyelectrolyte samples, as shown in Figure 2.

In counterion condensation theory a linear polyelectrolyte is modeled as an infinitely thin line of average charge spacing \(b \). Small electrolyte counterions are treated as point charges of valence \(Z \). The ratio of the net charge \(Q \) (charge after counterion neutralization) to the formal charge of a polyelectrolyte is given by

\[
F = \frac{Q}{q} = |\xi|^{-1} \quad \xi > |\xi|^{-1}
\]

where \(q \) is the repeat unit structural charge and \(N \) is the degree of polymerization. The linear charge density parameter, \(\xi \), is defined as

\[
\xi = \frac{q^2}{k_BTb}
\]

where \(\epsilon \) is the dielectric constant of the solvent, \(k_B \) is the Boltzmann constant, \(b \) is the Bjerrum length, and \(T \) is the absolute temperature. The effective charge on the polycation is reduced by counterion condensation at \(\xi > |\xi|^{-1} \). The dependence of electrophoretic mobility on counterion valence is thus expected, since it is defined as the ratio of the effective charge to the friction coefficient. Manning's theory for polyelectrolytes at low ionic strength was also reported by Ware et al.\(^{1,4}\) The observed mobility of \(U = 2.4 \) (\(\mu m \ cm)/(V \ s) \) is consistent with the values (2–3 (\(\mu m \ cm)/(V \ s) \)) reported by Zero and Ware,\(^{8}\) but much lower than those reported by Wilcoxon and Schurr.\(^{10}\)

Figure 3 shows the electrophoretic mobility of polyelectrolyte with MW = 5.9 \(\times 10^4 \) in phosphate buffer with an ionic strength of 0.01 M, as a function of pH. In the present pH range the anions are a mixture of \(H_2PO_4^- \) and \(HPO_4^{2-} \). On the basis of the pH titration of phosphate,\(^{14}\) the mobility of the polyelectrolyte chains at high salt are electrophoretically free-draining and the electrophoretic mobility is given by

\[
U = q_0/f_0
\]

where \(q_0 \) is the residue charge and \(f_0 \) is the residue frictional coefficient. Thus, the mobility of free-draining polyelectrolytes should be independent of molecular weight. Along with constant \(\gamma \), this leads to constant mobility at pH values \(\leq 8 \). At pH 10, \(\gamma \) equals 0.9, but the mobility obtained is smaller than that at \(\gamma \approx 1 \) by more than a factor of 2. This suggests that \(f \) is a complex function of \(\gamma \) at pH > 8. According to Hermans,\(^{12}\) polyelectrolyte chains at high salt are electrophoretically free-draining and the electrophoretic mobility is given by

\[
U = q_0/f_0
\]

where \(q_0 \) is the residue charge and \(f_0 \) is the residue frictional coefficient. Thus, the mobility of free-draining polyelectrolytes should be independent of molecular weight. Along with constant \(\gamma \), this leads to constant mobility at pH values \(\leq 8 \). At pH 10, \(\gamma \) equals 0.9, but the mobility obtained is smaller than that at \(\gamma \approx 1 \) by more than a factor of 2. This suggests that \(f \) is a complex function of \(\gamma \) at pH > 8.

According to Hermans,\(^{12}\) polyelectrolyte chains at high salt are electrophoretically free-draining and the electrophoretic mobility is given by

\[
U = q_0/f_0
\]

where \(q_0 \) is the residue charge and \(f_0 \) is the residue frictional coefficient. Thus, the mobility of free-draining polyelectrolytes should be independent of molecular weight. Along with constant \(\gamma \), this leads to constant mobility at pH values \(\leq 8 \). At pH 10, \(\gamma \) equals 0.9, but the mobility obtained is smaller than that at \(\gamma \approx 1 \) by more than a factor of 2. This suggests that \(f \) is a complex function of \(\gamma \) at pH > 8.

According to Hermans,\(^{12}\) polyelectrolyte chains at high salt are electrophoretically free-draining and the electrophoretic mobility is given by

\[
U = q_0/f_0
\]

where \(q_0 \) is the residue charge and \(f_0 \) is the residue frictional coefficient. Thus, the mobility of free-draining polyelectrolytes should be independent of molecular weight. Along with constant \(\gamma \), this leads to constant mobility at pH values \(\leq 8 \). At pH 10, \(\gamma \) equals 0.9, but the mobility obtained is smaller than that at \(\gamma \approx 1 \) by more than a factor of 2. This suggests that \(f \) is a complex function of \(\gamma \) at pH > 8.

According to Hermans,\(^{12}\) polyelectrolyte chains at high salt are electrophoretically free-draining and the electrophoretic mobility is given by

\[
U = q_0/f_0
\]

where \(q_0 \) is the residue charge and \(f_0 \) is the residue frictional coefficient. Thus, the mobility of free-draining polyelectrolytes should be independent of molecular weight. Along with constant \(\gamma \), this leads to constant mobility at pH values \(\leq 8 \). At pH 10, \(\gamma \) equals 0.9, but the mobility obtained is smaller than that at \(\gamma \approx 1 \) by more than a factor of 2. This suggests that \(f \) is a complex function of \(\gamma \) at pH > 8.
Counterion Condensation on Polylysine

6337

counterion is considered to be territorially bound. In

In Figure 4 the dependence of \(U \) on \([\text{HPO}_4^{2-}]\) is calculated by using eqs 8–12. For the ionic conductances \(\lambda_i \), we used the limiting values in pure water instead of those at the corresponding small-electrolyte concentration. The value of \(V_p \) was calculated by using the following equation for a 1:1 salt:

\[
V_p = 41.1(\xi - 1)b^3
\]

Clearly, the calculated relative mobility values are only consistent with the current experimental data at very low \(\text{HPO}_4^{2-} \) concentrations. The discrepancy between the theoretical curve and experimental data may arise from limitations in the model underlying eq 8; we also note that the assumption that the counterions hydration layers are unperturbed by binding, implicit in the calculation of \(f \), might be more problematic for the present system than, e.g., \(\text{Na}^+ \) or \(\text{Mg}^{2+} \) and DNA. The present discrepancy is also in accord with the conclusion reached by Ware et al., namely that the theory overestimates the electrophoretic mobility for DNA\(^{14}\) and polylysine\(^{6}\) in low salt solutions. The theory as summarized in eq 8 may be qualitatively correct, but its application to the calculation of the electrophoretic mobility is not yet quantitatively satisfied.

Acknowledgment. We thank professor Gerald Manning for helpful discussions. This research was supported by grants from the National Science Foundation (DMR 9014945) and the Petroleum Research Fund, administered by the American Chemical Society (ACS-PRF No. 25532-AC7B).

References and Notes

(5) Schmitz, K. S.; Ramsay, D. J. Macromolecules 1985, 18, 933.
(6) Ramsay, D. J.; Schmitz, K. S. Macromolecules 1985, 18, 2422.
(11) Barskaya, T. V. Biopolymers 1971, 10, 2181.