April 16, 2012 DUE: April 24, 5 PM ## **Activation Energy of Protein Dimerization** Origin_Assign_7_DimerDissoc_Data.xlsx contains the dissociation kinetics of a protein dimer (60 kDa), which dissociates slowly with time. In these experiments, the sample was prepared in a nonequilibrium initial state, consisting primarily of dimer, and the re-establishment of equilibrium was monitored as an increase in the fraction of monomeric protein over time. $$k_{a}$$ $$P_{2} \rightleftharpoons 2P$$ $$K_{d} = \frac{k_{d}}{k} = \frac{[P]^{2}}{[P_{a}]}$$ (1) In Equation (1), K_d is the equilibrium dissociation constant, k_d is the first order rate constant for dissociation and k_a is the second order rate constant for association. The dissociation kinetics have a very strong temperature dependence. The Excel file contains the rate data for three different temperatures, 4, 14 and 30 °C. The kinetics of dimer dissociation can be fit to equation (2), which describes the fraction of protein in the dimeric state (f_d) as a function of time (t), the fraction of dimeric protein at the beginning of the experiment ($f_{d,0}$), the fraction of dimeric protein after equilibrium has been re-established ($f_{d,eq}$), and the rate constant for dimer dissociation (k_d) $$f_{d} = \frac{f_{d,0} - f_{d,eq} + f_{d,eq} \left(1 - f_{d,0} f_{d,eq}\right) \exp\left(\frac{1 + f_{d,eq}}{1 - f_{d,eq}} k_{d} t\right)}{f_{d,eq} \left(f_{d,0} - f_{d,eq}\right) + \left(1 - f_{d,0} f_{d,eq}\right) \exp\left(\frac{1 + f_{d,eq}}{1 - f_{d,eq}} k_{d} t\right)}$$ (2) $f_{\rm d,0}$ = fraction of protein dimer at the beginning of the experiment (t = 0) $f_{\rm d,eq}$ = fraction of protein dimer upon re-establishing the equilibrium ($t \rightarrow \infty$) $k_{\rm d}$ = first order rate constant for the dissociation of dimer The fitting procedure provides direct estimates of $f_{d,0}$, $f_{d,eq}$ and k_d as adjustable parameters in the fit. From these values, estimates of K_d and k_a can be computed. k_d , K_d and k_a were determined over a range of temperatures (Table 1), which allows transition state theory analysis of the rate data. Chem 728 4/16/2012 | no. | [P] (μM) ^b | T (°C) | $f_{\sf d,eq}^{}$ | K_{d} (μΜ) ^{c} | $k_{\rm d} \times 10^6 ({\rm s}^{-1})^c$ | $k_{\rm a} ({\rm M}^{-1} {\rm s}^{-1})^c$ | |-----|-----------------------|--------|-------------------|--|---|--| | 1 | 2.9 | 4.0 | 0.53 ± 0.01 | ** | 2.3 ± 0.2 | ** | | 2 | 4.2 | 9.0 | 0.48 ± 0.05 | 4.7 ± 0.5 | 3.6 ± 0.6 | 0.7 ± 0.1 | | 3 | 4.0 | 14.0 | 0.43 ± 0.01 | ** | 7.8 ± 0.7 | ** | | 4 | 1.9 | 18.0 | 0.34 ± 0.01 | 4.9 | 19 ± 2 | 4.0 | | 5 | 3.4 | 23.0 | 0.32 ± 0.01 | 9.8 | 44 ± 3 | 4.3 | | 6 | 7.9 | 23.0 | 0.46 ± 0.01 | 10 | 85 ± 5 | 8.3 | | 7 | 3.1 | 27.0 | 0.26 ± 0.01 | 13 | 153 ± 10 | 12 | | 8 | 3.1 | 30.0 | 0.22 ± 0.01 | ** | 328 ± 17 | ** | | 9 | 6.0 | 30.0 | 0.28 ± 0.01 | 22 | 488 ± 17 | 22 | **TABLE 1.** Rate Data for the Dissociation of Protein Dimers^a In the transition state analysis of the data, Eyring plots are used to determine $\Delta H^{0\dagger}$ and $\Delta S^{0\dagger}$ $$\ln\left(\frac{k_{\rm d}}{T}\right) = \ln\left(\frac{k_{\rm B}}{h}\right) - \frac{\Delta G^{\rm o^{\ddagger}}}{RT} \tag{3}$$ If the plot of $\ln(k_d/T)$ vs. 1/T is not linear, then the expression for $\Delta G^{o^{\ddagger}}$, which does not assume $\Delta C_P^{o^{\ddagger}} \approx 0$, should be used $$\Delta G^{\circ \dagger} = \Delta H^{\circ \dagger} + \Delta C_p^{\circ \dagger} \left(T - T_r \right) - T \left[\Delta S^{\circ \dagger} + \Delta C_p^{\circ \dagger} \ln \left(\frac{T}{T_r} \right) \right] \tag{4}$$ ## **Procedure/Report Format** - **1.** Use Origin to fit the 4, 14 and 30 °C kinetic data (in *Origin_Assign_7_DimerDissoc_Data.xlsx*) using equation (2). Your values of $f_{d,eq}$ and k_d should agree with (be similar to) those in Table 1. - **2.** From the estimates of $f_{d,eq}$ and k_d , compute K_d and k_a . (In other words fill in the ** to Table 1). Show the calculations. (Neat handwritten calculations, scanned, are fine to turn in.) - **3.** Create an Eyring plot $(\ln(k_d/T) \text{ vs. } 1/T)$ of the dissociation rate constants in Table 1 (also in the Excel file). Fit the data according to equations (3 & 4) to generate estimates $\Delta H^{o^{\ddagger}}$, $\Delta S^{o^{\ddagger}}$ and $\Delta C_P^{o^{\ddagger}}$ of dissociation. (Use a reference temperature of 298 K in this analysis.) - **4.** In a DSC study of protein stability, the monomeric protein was found to have calorimetric enthalpy and heat capacity changes (ΔH° and ΔC_{P}) of 255 kJ/(mol monomer) and 4.2 kJ/deg/(mol monomer), respectively, at the $T_{\rm M}$ (60 °C). How do these values of compare to $\Delta H^{\circ \dagger}$, $\Delta S^{\circ \dagger}$ and $\Delta C_{P}^{\circ \dagger}$ at the same temperature. (Hint: use the $\Delta C_{P}^{\circ \dagger}$ to compute $\Delta H^{\circ \dagger}$, $\Delta S^{\circ \dagger}$ at the $T_{\rm M}$.) What does this tell you about the character of the transition state for dissociation? ^aMonomer and dimer fractions vs. time were determined by gel-filtration, except experiments nos. 6 & 9, which were determined by circular dichroism spectroscopy. ^bProtein concentrations are expressed in moles of monomer. ^cUncertainties in $f_{d,eq}$ and k_d are standard errors determined from curve-fitting. The uncertainties in k_a and K_d were determined by the propagation of error from the uncertainty estimates of $f_{d,eq}$ and k_d . Otherwise, uncertainties of 10% were assumed for k_a and K_d on the basis of the uncertainty in the total protein concentration. Chem 728 4/16/2012 **EC1.** Construct an Eyring plot with the values of k_a from Table 1 and obtain estimates of $\Delta H^{o^{\ddagger}}$, $\Delta S^{o^{\ddagger}}$ and $\Delta C_{\rho}^{o^{\ddagger}}$ of association. Compute ΔH^{o} , ΔS^{o} and ΔC_{ρ}^{o} of dimer dissociation at the reference temperature (298 K). What do you learn of the differences between the monomeric and dimeric forms of the protein? **EC2.** Derive equation (2). (All steps in the derivation must be shown; all terms in the derivation must be defined. Neat (legible) handwritten derivations are acceptable.)