Electron Paramagnetic Resonance (EPR) SDSL – Site Directed Spin Labeling

1. Discovery of EPR – E. Zavoisky, USSR, 1945

http://kfti.knc.ru/eng/about/index.html

2. Development as a Biophysical Tool. - Synthesis of a stable

free radical (the nitroxide), and labeled biomolecules

(Spin labels) (Humphries & McConnell *in* Methods of Experimental Physics, vol. 20, G. Ehrenstein and H. Lecar, eds., 1982, Academic Press, p. 53-122.)

3. Applications – dynamics of molecular motions in macromolecules

and supramolecular assemblies. Examples taken from Hubbell, Cafiso and Altenbach. 2000. Identifying conformational changes with site-directed spin labeling. *Nat. Struct. Biol.* **7**:735-739. & Columbus and Hubbell. 2002. <u>A new spin on protein dynamics</u>. *Trends in Biochemical Sciences.* 27:288-295. (Review)

2. Basic Properties of ESR

- **1. Electrons have 'spin'**. A circulating electric charge has a magnetic moment. $\mu = -q\beta S$
- 2. Energy Levels are Nondegenerate in a Magnetic Field. Electrons (and some nuclei) with spin = ½, have two energy levels, which results in one transition.

 $E = -\mu \cdot \mathbf{H}_0 = g\beta \mathbf{S} \cdot \mathbf{H}_0$

In an external magnetic field applied along the z-axis, the energies can be on the z-component of the spin, $+/- \frac{1}{2}$

3. The Transition Energy is given as the difference in the low and high energy levels:

$$h_{\rm V} = E(S_{\rm z} = +1/2) - E(S_{\rm z} = -1/2)$$

 $h_{\rm V} = g\beta H_0$

2. Basic Properties of ESR

The Transition Energy is also expressed as:

$$h_{\mathcal{V}} = g\beta H_0 \qquad \rightarrow \qquad 2\pi \nu = g\beta H_0 / \hbar$$
$$\omega = \gamma H_0$$

 γ is the magnetogyric (or gyromagnetic) ratio

2. Nitroxide Spin Labels

Nitroxide Spin Labels are Stable between pH 3 and 10

They must be tetra-substituted for stability

They are sensitive (quenched by) reductants

Labels have been incorporated into biomolecules

Proteins

The Local Field Produced by the Magnetic Moment of ¹⁴N Results in Hyperfine Splitting

(Humphries & McConnell, 1982)

Hyperfine Splitting Depends on Orientation of Molecule with Respect to the Magnetic Field

← 'Powder Pattern' of an Isotropic (Unoriented) Immobilized Label

Hyperfine Splitting in Oriented Spin Label Crystals (Spin Label doped in Cholesteryl Chloride)

Effects of Mobility

Immobilized

Magnetic Field Dependence of EPR Line Shapes

Increase Magnetic Field

- → Increase energy level separation
- → Shorten lifetime of excited state by a change in the spontaneous decay rate
- → Shift the observation window of molecular dynamics from longer to shorter time scales

P. P. Borbat et al., Science 291, 266 - 269 (2001)

Dipole-Dipole Exchange Interactions

Exchange Interactions in Double-Labeled T4 Lysozyme Samples Reflect Domain Motion

Measurement of, and changes in, Restricted Mobility

Scaled mobility: $M_s = \frac{\left(\delta^{-1} - \delta_i^{-1}\right)}{\left(\delta_m^{-1} - \delta_i^{-1}\right)}$ where δ , δ_m , δ_i are the measured peak width, the most mobile label peak width and the least mobile label width, respectively. In these examples $\delta_m = 2.1$ Gauss and $\delta_i = 8.4$ Gauss.

(Columbus & Hubbell, 2002)

-1.2

1.0

0.8

0.6 🚬

T/BS

0.4

50