Origin of the Hydrophobic Force

Consider the energy required to pull apart the interface between two liquids ($\alpha \& \beta$ are either hydrocarbon or water)

'Work of Adhesion'
$$W_{\alpha\beta} = \gamma_{\alpha} + \gamma_{\beta} - \gamma_{\alpha\beta}$$

$$\gamma_{\alpha\beta}$$
 β
 β
 γ_{α}
 β
 γ_{β}

The opposite process is the energy of interface formation = $-W_{\alpha\beta}$

Free energy of formation of a liquid-liquid area of contact from surfaces previously exposed to air, erg/cm² at 25 °C

Liquid Interface	Hexane	Octane
Hydrocarbon/Water	-39.5	-42.0
Hydrocarbon/Hydrocarbon	-35.8	-42.4
Water/Water	-144	-144

Energy of Interface formation (relative to vacuum/liquid interface) is favorable in all cases

Is the formation of hydrocarbon/water interface favorable?

$$W_{\alpha\alpha} + W_{\beta\beta}$$

$$-2W_{\alpha\beta}$$

Transfer reaction

Energy of Water/Hydrocarbon interface formation from Water/Water & Hyd/Hyd Interfaces =

$$\frac{1}{2}(W_{\alpha\alpha} + W_{\beta\beta} - 2W_{\alpha\beta})$$

 $\frac{1}{2}(144 + 42.4 - 84)$

51.2 erg/cm² of octane/water interface

Clathrate Structures

The unfavorable Gibbs energy of Hyd/Water interface formation is mainly *entropic*

21-25 cal/mole per Å² for saturated aliphatic hydrocarbons

<20 cal/mole per Å² for aromatic hydrocarbons.

