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Binding Polynomials 
 
We’ve looked at three cases of ligand binding so far: 
 
The single set of independent sites (ss[i]s) 

 [ ]
[ ]LK
LnK

+
=
1

υ  (1) 

Multiple sets of independent sites (ms[i]s, or m[i]ss) 
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‘All or none’, or ‘two-state’ cooperativity 
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(1) & (3) are the limiting cases of no cooperative interactions, and very strong 
cooperative interactions, respectively, for a system with one type of binding site. 

Q: What are the ‘units’ of K in Eq. (3)? (Why is ‘units’ placed in quotations.) What is the 
relationship to K in Eq. (1)? 

 
Equations 1 to 3 spell out the statistical distributions of protein microstates, with specific 
reference to the extent of ligand binding (and assumptions about the nature of the 
binding).  In general, the numerator of υ  accounts for the number of moles of bound 
ligand, and the denominator accounts for the number moles of protein.  The general 
case with n binding sites is written as 
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Have there been assumptions made about whether the sites interact, or whether there 
is one or more class of sites?  (The answer to both is no, hence its generality.)  Also, 
without loss of generality, substitutions can be made for the PLi (where i ranges from 0 
to n). 
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From here, relationships among binding constants can be assumed and then exploited 
in Equation 5 to reach Equations 1 to 3.  Some of the subtleties in Equation 5 are, in 
part, a matter of definition.  K1 through Kn are ‘macroscopic’ association constants; the 
relationship to the underlying intrinsic constant(s) will change according to the number 
of sets (or classes) of sites, and the nature of the interaction among sites, i.e. are there 
interactions, or not.  In all cases [P] can be factored out to give: 
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Factoring out [P] implicitly acknowledges it ([P]) as a ‘reference state’ with respect to 
statistical and energetic considerations, more on this below. 
 

Q: What are the expressions for K1 in terms of the intrinsic association constants, if (i) 
there is a single set of independent sites, (ii) there are n sets of independent sites, (iii) 

there is one set of strongly (all or none) interacting sites? 
 
 
SSS.  The relationship between the macroscopic association constants and a single 
intrinsic association constant (K), simply reflects the statistics of ligand binding through 
a single class of sites.  The individual steps of the binding process, catalogued 
according to the number of ligands bound, are given by 
 
P + L  PL    K1 = [PL]/[P][L] 
PL + L  PL2   K2 = [PL2]/[PL][L] 
PL2 + L  PL3   K3 = [PL3]/[PL2][L] 
 .     . (7) 
 .     . 
 .     . 
PLn-1 + L  PLn   Kn = [PLn]/[PLn-1][L] 
 
The Ki (macroscopic constants) are related to K (the intrinsic constant) by 
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where Ωn,i and Ωn,i-1 represent the number of ways of assorting i and i-1 ligand 
molecules, respectively, on n independent, equivalent binding sites. 
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Equation 9 is recognizable as the equation for coefficients of the binomial expansion.  
For small values of n, e.g. 4, the validity of the Equations 8 and 9 in generating the 
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relationships between the Ki and K can be validated by enumerating the different 
microscopic forms of PLi and PLi-1 diagrammatically. 
 
Consider the situation with 4 sites.  In Equation 10, the formulae for the Ki, expressed in 
terms of K (via Equation 8) have been substituted into Equation 5 
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The terms in the numerator are collected in such as fashion to accentuate the number 
of sites (4). 
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Factoring out 4K[L] in the numerator produces a 3rd order polynomial.  The denominator 
is a 4th order polynomial. 
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Both of these are of the form (1 + K[L])n, 
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Generalizing to n sites gives Equation 1. 
 
The Partition Function, Q.  The denominator of Equation 6 is equal to the total protein 
concentration divided by the concentration of free protein is [P]tot/[P].  This quantity has 
meaning in statistical mechanics; it is an example of a partition function, Q. 
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Q is the sum of the number of ways a given energy state may be formed. [P], 
represented by the leading term on the right hand side of Equation 14, is the ‘reference 
state’ and has a relative energy equal to 1, and a statistical factor equal to 1. The 
partition function for the equivalent sites (sss) model with 4 sites is 
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When written in a slightly different way, as Equation 16, 
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shows explicitly the contributions from statistics (the lead numerical coefficients) and 
terms that represent the energies of the different protein forms with one or more ligand 
molecules bound (Ki[L]i). These are relative energy terms, relative to the energy of the 
reference state [P], and are also know as ‘statistical weights’ (they weight the statistical 
contribution).  Q, for the general case for n equivalent binding sites is 
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Each term in the summation of Equation 17 is the product between the number of 
distinguishable microscopic arrangements (Ωn,i) and the statistical weight, Ki[L]i.  (K[L] is 
sometimes referred to as the reduced ligand concentration.) The Ki[L]i represent ratios 
of protein forms, e.g. [PLi]/[P], in a Boltzmann-like manner, [PLi]/[P] = exp[iΔg/kBT], 
where Δg = Δg0 + kBTln[L]. The progressive binding of ligand incrementally adds to the 
statistical weight.  Note that for the independent sites model, the energy increment is 
the same for each ligand molecule that binds to the protein: 
 
  i  statistical weight      Ratio        Δg     
 0 K0[L]0  [P]/[P] 0 
 1 K1[L]1  [PL]/[P] Δg 
 2 K2[L]2  [PL2]/[P] 2Δg 
 3 K3[L]3  [PL3]/[P] 3Δg 
 . .  . . 
 . .  . . 
 n Kn[L]n  [PLn]/[P] nΔg 
 
Finally, it is interesting to note that 
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Discussions of the relationship between experimental observables and the partition 
function, of which Equation 18 is an example, are found in statistical thermodynamics 
and biophysics textbooks. 
 
 
Two Models of Finite Cooperativity 
 
Cooperativity is rarely adequately described by an ‘all or none’ scenario, so other 
models have been developed.  Two widely used models are the ‘concerted’ and 
‘sequential’ models. 
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1. The Monod-Wyman-Changeux (MWC), or concerted, model was published in 1965.  
A central assumption is that cooperative proteins consist of an oligomeric cluster of 
protomers (subunits), in which all the protomers are in the same conformation, although 
the protein can undergo a transition between (at least) two conformational states in a 
concerted fashion.  The different conformations have different ligand binding affinities.  
The details of the assumptions are found in the paper that described the model: Monod, 
Wyman & Changeux. 1965. J. Mol. Biol. 12, 88-118.  (Posted on the course website.) 
Also, see Cantor & Schimmel, Vol. III, Chapter 17 – the full reference for this book is on 
the course website. 
 
The two assumptions of the MWC model (i) that two conformations of the 
macromolecule are assumed, and (ii) that a difference in binding affinity exists between 
these two forms, are combined in a way that generates positive cooperativity. 
 
The relaxed (R) and tense (T) forms of the macromolecule, each engage in ligand 
binding equilibria.  (Here the ligand is represented by the letter ‘F’.) 
 
R + F  RF   T + F  TF 
RF + F  RF2  TF + F  TF2 
RF2 + F  RF3  TF2 + F  TF3 
 .     .  (19) 
 .    . 
 .    . 
RFn-1 + F  RFn  TFn-1 + F  TFn 
 
An equilibrium, which exists between the R and T forms in the absence of ligand, is 
given by 

R  T L0 = [T]/[R] (20) 

where L0 is generally greater than one, which is implies that the T form (the low affinity 
form) is more stable than the R form in the absence of ligand.  The relationship between 
ligand binding constants to the T and R forms, which are characterized by the intrinsic 
association constants KT and KR, respectively, is given by  

 c = KT/KR (21) 

By definition the T form binds ligand less tightly than the R form, c < 1.  The average 
degree of saturation takes on a specific form, which is illustrated by a protein with four 
ligand-binding sites 
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Factoring the polynomials in the same manner, as had been done for the single sites 
model, gives 
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Application of the definitions for c (KT = cKR) and L0 ([T] = L0[R]) allows [T] and KT to be 
factored out 
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Generalization to the protein that has n binding sites, gives 
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What values of c and L0 must take on to reduce to either (i) the single-set-of-sites 
model, or (ii) the all-or-none model? 
 
2. The Koshland-Nemethy-Filmer (KNF) Sequential Model generates cooperativity by 
allowing the intrinsic constants change in a way that reflects the changing probability of 
a protein subunit to undergo the ligand-dependent transition from a low to a high affinity 
state, which is influenced by ligand binding to one (or more) neighboring subunits.  A 
two-site model suffices to illustrate the point 

 [ ] [ ]
[ ] [ ]2211

2
211

21
22

FKKFK
FKKFK

++

+
=υ  (26) 

where K1 and K2 are intrinsic binding constants.  In the sequential model, K1 < K2 
indicates positive cooperativity, K1 > K2 indicates negative cooperativity, and K1 = K2 
indicates independent sites.  The exact nature of the binding polynomial and the 
interaction terms depends on the symmetry of the macromolecule.  See the original 
reference for details. (Koshland, Nemethy and Filmer. 1966. Biochemistry. 5:365-385; 
posted at the course website) 


