Chem 728 Single Molecule Spectroscopy L1 April 10, 2012

> Single molecule spectroscopy 1: Why is it useful? How does it work? How do you do it ?

Mike Barnes Department of Chemistry, and Department of Physics University of Massachusetts Amherst, MA 01003 mdbarnes@chem.umass.edu 258 Goessmann Hall

UMassAmherst

What is "chemical microscopy" ? ...

• What we'd like to do:

- is to look at the molecules!

 obtain structural, chemical, morphological information with the convenience of an optical probe

 derive structure/photophysical property relations at nanoscopic level

Taking pictures of single-molecules

Motivations

- -every molecule is special!
- connection between structure and photophysics

•Similarities and differences with conventional photography?

- -Not quite the same as conventional photography
- -Interpreting molecular photographs is not so simple...

•Some cool examples

- -SMS as a molecular 'ruler' (sm-FRET)
- -molecular motors
- -super-resolution' techniques applied to complex molecular structures

Polymer optoelectronics and the iPhone display

- molecular heterogeneity?
- morphology and optoelectronic function?

0.00001 mm

molecular packing and charge-transport efficiency?

Molecular photography: Just take a picture?

Imaging "*big*" things is straightforward – dynamical/environmental information is carried in contextual clues
Imaging "small" (< 300 nm) not so straightforward....

Molecular imaging and astronomy...

Google images: Hubble Space Telescope

•like stars, we need the molecules to make their own light!

•How to interpret the image?

Basic ingredients of a single-molecule experiment

- 1. Need strong transition dipole < e $| \mu | g >$, with fluorescence energy in visible range (400 850 nm); this is where CCD cameras, APDs are most efficient
- 2. Need molecule to be \approx immobilized (at least not moving very fast!)
- 3. Low background (solvent Raman, impurities); low fluorophore density
- 4. Need to excite molecules efficiently ($t_{excite} \approx 0$); high-flux lasers matched to excitation (S0- S1) energy
- 5. Need to have very efficient light collection/detection system (capture as many photons as possible)
- 6. Useful (but not necessarily required) to have good short-time (no blinking) and long-time (low photobleaching quantum yield) stability

Chemical information is in the photons!!

characteristic of particular atoms/molecules!!

... every 'photon' carries a few bits of information (wavelength, polarization, correlations in time...)

More photons = More Information !

Probing single molecules in microdroplets (1999)

C-Y. Kung, et al. Appl. Optics 38, 1481 (1999)

How does an atom/molecule absorb (emit) light ?

How does an atom/molecule absorb (emit) light ? Bloch vector description

$$\vec{P} \rightarrow \hat{i}S_x + \hat{j}S_y + \hat{k}S_z$$

- $S_z = state \ population$ $S_{x,y} = coherences$
- $\vec{P} \rightarrow \{0,0,1\}$ (system is in excited state)
- $\vec{P} \rightarrow \{0,0,-1\}$ (system is in ground state)
- $\vec{P} \rightarrow \{a, \mathbf{i}b, 0\}$ (system is in coherent mixture of excited and ground state)

•In NMR, "rotate" Bloch vector from $\{0,0,1\}$ to $\{a, ib, 0\}$ via timed applied field; turn OFF transverse field, detect decay of $P_{x,y}$

•In spontaneous radiation (fluorescence), prepare {0,0,1} via excitation pulse; interaction with *vacuum electric* field drives system downward, accompanied by emission of a *photon*

Charge 'sloshing' and polarization properties of single molecules

• "sloshing" of charge density in 1D gives rise to antenna behavior for single molecules!

•Patterns are distinct for linear dipoles (randomly oriented in x-y) -> extract molecular orientation (and dynamics!) from single molecules

Fluorescence Properties of Single Quantum Dots

Barnes Lab Single-Molecule Photography Studio

Probing lifetime and polarization properties on single molecules (photon by photon....)

rT3r: time and polarization resolved luminescence from single molecules/np's

Single-Molecule Probes of Proton Attachment (M. Y. Odoi, J. Labastide, S. Ghosh, J. Hardy, and M. D. Barnes)

Wavelength (nm)

SM-FRET: Fluorescence as a molecular 'ruler'

SM-FRET: Fluorescence as a molecular 'ruler'

"sloshing-induced sloshing" occurs over very short distance scale

$$E(r) = \frac{1}{1 + \left(\frac{r}{R_0}\right)^6}$$
$$R_0 = C \kappa^2 \cdot \Phi_D \cdot \int I_D(\lambda) \varepsilon_A(\lambda) \cdot \lambda^4 d\lambda$$

1

(Forster Radius)

Determine r from donor/acceptor fluorescence intensities:

$$r = \left(\left(\frac{I_D}{\Phi_D} \right) \left(\frac{\Phi_A}{I_A} \right) \right)^{1/6} R_0$$

SM-FRET: Fluorescence as a molecular 'ruler'

Probing structure and dynamics of nucleosomes upon DNA methylation usind sm-FRET (T-H. Lee, PSU Chemistry)

Charge 'sloshing' and polarization properties of single molecules

• "sloshing" of charge density in 1D gives rise to antenna behavior for single molecules!

•Patterns are distinct for linear dipoles (randomly oriented in x-y) -> extract molecular orientation (and dynamics!) from single molecules

Why doesn't a single-molecule fluorescence image look like a molecule???

Spatial resolution in optical imaging of SM's

Electric field at detector adds incoherently for different molecules

How could you tell if you had "one" or "two"?

adds incoherently for different molecules

STORM super-resolution images of biological structures

Near-field optical probes of conjugated polymer nanoparticle thin-film structure

Near-field *absorption* probes of nonluminescent polymer nanostructures

M. Baghgar, et al. to be published

Collaborators: Hayward, Emrick

• Scan near-field excitation (532 nm), detect Rayleigh scattering (180°) in far-field

• Absorption is signaled by 'dip' in scattering intensity – nanoparticles show enhanced scattering and absorption; fibrils appear to show only absorption

• Scattering attenuation scales linearly with surface height

• Currently developing multiplewavelength scanning capability to probe local differences in structure (i.e. amorphous vs. crystalline) or chemical composition