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Single molecule spectroscopy 1:
Why is it useful?
How does it work?
How do you do it ?
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What is “chemical microscopy” ? ...

e What we’d like to do:

Ui

- js to look at the molecules!

- obtain structural,chemical,

morphological information with the
convenience of an optical probe
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- derive structure/photophysical
property relations at nanoscopic
level



Taking pictures of single-molecules

*Motivations
-every molecule is special!
- connection between structure and
photophysics

*Similarities and differences with

conventional photography?
-Not quite the same as conventional
photography
-Interpreting molecular photographs is not
so simple...

*Some cool examples
-SMS as a molecular ‘ruler’ (sm-FRET)
-molecular motors
-super-resolution’ techniques applied to
complex molecular structures



Polymer optoelectronics and the iPhone display
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* molecular heterogeneity?
* morphology and optoelectronic function? 0.00001 mm
* molecular packing and charge-transport efficiency?



Molecular photography: Just take a picture?

Imaging “big” things is straightforward - dynamical /environmental
information is carried in contextual clues
«Imaging “small” (< 300 nm) not so straightforward....



Molecular imaging and astronomy...

Google images: Hubble Space Telescope

*like stars, we need the
molecules to make their
own light!

*How fo interpret the
image?



Basic ingredients of a single-molecule experiment

1. Need strong transition dipole < e | u | g >, with fluorescence energy in
visible range (400 — 850 nm); this is where CCD cameras, APDs are most
efficient

2. Need molecule to be = immobilized (at least not moving very fast!)
3. Low background (solvent Raman, impurities); low fluorophore density

4. Need to excite molecules efficiently (t = 0); high-flux lasers matched to

excitation (SO- S1) energy

excite

5. Need to have very efficient light collection/detection system (capture as
many photons as possible)

6. Useful (but not necessarily required) to have good short-time (no blinking)
and long-time (low photobleaching quantum yield) stability



Chemical information is in the photons!!
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absorb
.. light spectrum is v )

characteristic of particular

atoms/molecules!!
.. every ‘photon’ carries a few

bits of information (wavelength,
polarization, correlations in time...)



More photons = More Information !

« like light-bulbs, molecules ‘burn out’ -limited atlong times by
photobleaching (N = 10° - 108)

Excited state absorption (Photobleaching)

S, 1. * Unlike light bulbs, stream of
' fluorescence photons isn't
continuous!
absorb _ //’
emit 7
SO
Time - limited at short times by triplet

shelving (dark state), “blinking”




Probing single molecules in microdroplets (1999)

Appll.ed Lasers, Photonics, and (note intensity scale!!)
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How does an atom/molecule absorb (emit) light ?
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How does an atom/molecule absorb (emit) light ?
Bloch vector description

A n S, = state population
P—iS +jS, +kS.
S y = coherences

X

—— P —{0,0,1} (systemisin excited state)

P —{0,0,—1} (system is in ground state)

P —{a,ib,0} (system is in coherent mixture
of excited and ground state)

°In NMR, “rotate” Bloch vector from {0,0,1} to {a, ib, 0} via timed
applied field; turn OFF transverse field, detect decay of P, ,

*In spontaneous radiation (fluorescence), prepare {0,0,1} via excitation
pulse; interaction with vacuum electric field drives system downward,

accompanied by emission of a photon



Charge ‘sloshing’ and polarization properties of single
molecules

{ 1 Alg] =
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® “sloshing” of charge density in 1D
gives rise to antenna behavior for
single molecules!

ePatterns are distinct for linear
dipoles (randomly oriented in x-y) ->
extract molecular orientation (and
dynamics!) from single molecules



Fluorescence Properties of Single Quantum Dots

1P, nano-confinement gives
rise to size-dependent
transition energies

Charge density
> oscillates on a ring!



arnes Lab Single-Molecule Phofography Studio
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Probing lifetime and polarization properties on single molecules
(photon by photon....)
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rT3r. time and polarization resolved luminescence from single molecules/np's
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Single-Molecule Probes of Proton Attachment
KlnetICS (M. Y. Odoi, J. Labastide, S. Ghosh, J. Hardy, and M. D. Barnes)

* Do neutral and protonated molecules
have different fluorescence lifetimes?

Lifetime fluctuations associated with
C6 <-> C6+ interconversion
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SM-FRET: Fluorescence as a molecular ‘ruler’

“sloshing-induced sloshing”

Efficiency related fo overlap between
Donor emission and Acceptor absorption




SM-FRET: Fluorescence as a molecular ‘ruler’

“sloshing-induced sloshing” occurs
over very short distance scale
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SM-FRET: Fluorescence as a molecular ‘ruler’

601A

Probing structure and dynamics of
nucleosomes upon DNA methylation
usind sm-FRET (T-H. Lee, PSU Chemistry)

601D 601E S;I.C
601CD pair , w
| o 4
% g I 8 1 i b 4
5 A ™




Charge ‘sloshing’ and polarization properties of single
molecules

{ 1 Alg] =

e W

® “sloshing” of charge density in 1D
gives rise to antenna behavior for
single molecules!

ePatterns are distinct for linear
dipoles (randomly oriented in x-y) ->
extract molecular orientation (and
dynamics!) from single molecules



Why doesnt a single-molecule fluorescence image look like a
molecule???

Optical uncertainty principle: E(x) =fexp(ik(r — r")G(k)dk

Addition of partial waves gives
rise to constructive/destructive X
interference as function of x

Electric field at detector



Spatial resolution in optical imaging of SMS

For molecules separated by
distance < A/2, image appears
like one molecule
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Electric field at detector
adds incoherently for
different molecules



How could you ftell if you had ‘one” or “two”?
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For molecules separated by
distance < A/2, image appears
like one molecule
Electric field at detector

adds incoherently for
different molecules



STORM super-resolution images of biological structures

5 um

Comparison of conventional and STORM images of microtubules




Near-field optical probes of conjugated polymer nanoparticle
thin-film structure

Near-field absorption probes of nonluminescent
polymer nanostructures

» Scan near-field excitation (532 nm),
yMBEZ detect Rayleigh scattering (180°) in
e far-field

* Absorption is signaled by 'dip’ in
scattering intensity - nanoparticles
show enhanced scattering and
absorption; fibrils appear to show
only absorption

* Scattering attenuation scales
—on i linearly with surface height

— Height - 200

- 190

* Currently developing multiple-
wavelength scanning capability to
probe local differences in structure
(i.e. amorphous vs. crystalline) or
chemical composition
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M. Baghgar, et al. to be published Collaborators: Hayward, Emrick



