Förster Energy Transfer - AKA -Fluorescence Resonance Energy Transfer

1. Origins: Theory of Energy Transfer developed by T. Förster (Förster. **1948**. Annalen der Physik. **2**:55-75.)

2. Development of FRET as a Spectroscopic Ruler. (Stryer & Haugland. **1967**. Proc. Natl. Acad. Sci. **58**:719-726.)

3. Some Recent Applications:

a. Fluorogenic Energy Transfer Substrate (Hasegawa et al. 2003. Proc. Natl. Acad. Sci USA 100:14892-14896)
b. FRET & Single Molecule Ribozyme Action (Zhaung et al. 2002. Science 296:1473-1476)
c. Single Molecule Protein Folding (Lipman et al. 2003. Science 301:1233-1235)

Energy Transfer Efficiency depends on . . .

1. Separation Distance (r^{-6}). QM dipole-dipole operator has an r^{-3} dependence, but the probability of transfer is proportional to the square of the expectation value; thus a r^{-6} dependence.

2. Orientation. Dipole-dipole interactions are orientation dependent.

3. **Spectral Overlap.** The emission band of the donor must overlap with the absorption band of the acceptor.

4. **Quantum Yield.** Fluorescence yields of donor and acceptor should be high for efficient transfer.

5. Non-overlapping Absorption Bands, Non-overlapping emission bands. Not a necessity, but simplifies life.

$$k_{\rm T} = \frac{1}{\tau_{\rm D}} \frac{R_0^6}{R^6}$$
 $R_0 = 9.7 x \, 10^{-3} (J \kappa^2 n^{-4} \phi_{\rm D})^{1/6} \, {\rm cm}$

where

 $\tau_{\rm D}$ lifetime of the donor in the absence of acceptor $J_{\rm c}$ is the overlap integral

 κ^2 is the orientation factor $\rightarrow 2/3$ rapid tumbling limit

 $\phi_{\rm D}$ is quantum yield of the donor in the absence of acceptor

Relaxation following $D \rightarrow A$ transfer lowers the probability of reverse transfer

$$D_{\rm b} + A_{\rm a} \xrightarrow[k_{\rm T}]{k_{\rm T}} D_{\rm a} + A_{\rm b}$$

- 1. Absorption $(10^{-15} s)$
- 2. Vibronic Relaxation (10^{-12} s)
- 3. Energy Transfer (One **Coupled Transition**) $(10^{-15} s)$
- 4. Vibronic Relaxation (10^{-12} s)
- 5. Additional Coupled Transitions

Isolated chromophore lifetime & quantum yield

$$\phi_{\rm F} = \frac{k_{\rm F}}{k_{\rm F} + k_{\rm ic} + k_{\rm is} + k_{\rm q}[Q]}$$

Fluorescence Quantum Yield

$$k_{\rm F} = A_{ba} = \frac{1}{\tau_{\rm R}}$$

The intrinsic fluorescence rate constant is inversely proportional to the time constant for radiative decay, τ_R

$$\phi_{\rm F} = \frac{\tau_{\rm F}}{\tau_{\rm R}}$$
 where $\tau_{\rm F} = \frac{1}{k_{\rm F} + k_{\rm ic} + k_{\rm is} + k_{\rm q}[Q]}$

The observed fluorescence time constant, τ_F , is the inverse of the observed rate constant.

Two chromophores – efficiency of transfer

$$E = \frac{k_{\rm T}}{k_{\rm T} + k_{\rm F}^{\rm D} + k_{\rm ic}^{\rm D} + k_{\rm is}^{\rm D}}$$

Measurement of transfer efficiency (1)

$$\frac{\phi_{\rm D+A}}{\phi_{\rm D}} = \frac{k_{\rm F}^{\rm D}}{k_{\rm F}^{\rm D} + k_{\rm ic}^{\rm D} + k_{\rm is}^{\rm D} + k_{\rm T}} \frac{k_{\rm F}^{\rm D} + k_{\rm ic}^{\rm D} + k_{\rm is}^{\rm D}}{k_{\rm F}^{\rm D}} = 1 - E$$

Relative quantum yields of donor (ϕ_D) and donor in the presence of acceptor (ϕ_{D+A})

Measurement of transfer efficiency (2)

Measurement of transfer efficiency (3)

$$\frac{\tau_{\rm D(+A)}}{\tau_{\rm D}} = 1 - E$$

Fluorescence lifetime of donor is shortened in the presence of acceptor

What is k_{T} ?

$$k_{\rm T}(\nu) \propto \left| \left\langle \Psi_{\rm Da} \Psi_{\rm Ab} \right| \widetilde{V} \left| \Psi_{\rm Db} \Psi_{\rm Aa} \right\rangle \right|^2$$

" $k_{\rm T}$ is proportional to the square of the expectation value for the interaction causing the excitation"

Where

$$\widetilde{V} = \frac{\left(\hat{\mu}_{\rm D}}{R^3} - \frac{\left(\hat{\mu}_{\rm D}}{R} \cdot \hat{R}\right) \left(\hat{R} \cdot \mu_{\rm A}\right)}{R^5}$$

$$\widetilde{V} = \kappa \frac{\left|\hat{\mu}_{\rm D}\right\|\hat{\mu}_{\rm A}\right|}{R^3}$$

$$k_{\rm T}(\nu) \propto \left\| \left(\frac{\kappa}{R^3} \right) \left\langle \Psi_{\rm Da} \Psi_{\rm Ab} \right| \hat{\mu}_{\rm D} \left\| \hat{\mu}_{\rm A} \right| \Psi_{\rm Db} \Psi_{\rm Aa} \right\rangle \right\|^2$$

$$k_{\rm T}(\nu) \propto \left(\frac{\kappa^2}{R^6}\right) \left| \left\langle \Psi_{\rm Da} \middle| \hat{\mu}_{\rm D} \middle| \Psi_{\rm Db} \right\rangle \right|^2 \left| \left\langle \Psi_{\rm Ab} \middle| \hat{\mu}_{\rm A} \middle| \Psi_{\rm Aa} \right\rangle \right|^2$$

The orientation and distance contributions to the dipole-dipole operator are separated, removed from the integral, which are then also factored

Donor & Acceptor Contributions to the Overlap Integral

$$D_{ab} = \left| \left\langle \Psi_{Ab} \middle| \hat{\mu}_{A} \middle| \Psi_{Aa} \right\rangle \right|^{2} = 9.18 \ x \ 10^{-3} \int \left(\frac{\varepsilon_{A}}{\nu} \right) d\nu$$
$$\left| \left\langle \Psi_{Ab} \middle| \mu_{A} \middle| \Psi_{Aa} \right\rangle \right|^{2} \propto \frac{\varepsilon_{A}}{\nu}$$

<u>Acceptor</u>

The square of the expectation value for the acceptor is Dipole Strength of the acceptor

..... at a single frequency

<u>Donor</u>

The donor undergoes spontaneous emission (fluorescence). The Einstein coefficient for spontaneous emission is related to the Dipole Strength.

$$A_{ba} = \left(\frac{32\pi^{3}\nu^{3}}{3c^{3}\hbar}\right) D_{ab} \quad D_{ab} \propto \frac{A_{ba}}{\nu^{3}} \quad \boxed{D_{ab} \propto \frac{A_{ba}}{\tau_{R}\nu^{3}}} \quad \text{since } \tau_{R} = \frac{1}{A_{ba}}$$
$$\phi_{F} = \frac{k_{F}}{k_{F} + k_{ic} + k_{is} + k_{q}[Q]} = \frac{\tau_{F}}{\tau_{R}} \quad \Rightarrow \quad \frac{1}{\tau_{R}} = \frac{\phi_{D}}{\tau_{D}}$$
$$\left|\left\langle \Psi_{Da} | \hat{\mu}_{D} | \Psi_{Db} \right\rangle\right|^{2} \propto \frac{\phi_{D}}{\tau_{D}\nu^{3}}$$

$$k_{\rm T}(\nu) \propto \left(\frac{\kappa^2}{R^6}\right) \left(\frac{\phi_{\rm D}\varepsilon_{\rm A}}{\tau_{\rm D}\nu^4}\right)$$
$$k_{\rm T}(\nu) \propto \frac{\kappa^2 \phi_{\rm D}}{R^6 \tau_{\rm D}} \int_{band} \frac{\varepsilon_{\rm A}}{\nu^4} f_{\rm D}(\nu) d\nu = \frac{\kappa^2 \phi_{\rm D}}{R^6 \tau_{\rm D}} J$$

<u>Together</u>

These contributions (integrated over the acceptor absorbance band) produce the overlap integral (*J*) the orientation factor (κ^2) and the dependence of the donor quantum yield and lifetime (ϕ_D , τ_D), as well as the *R*⁻⁶ distance dependence.

2. Development of FRET as a Spectroscopic Ruler. (Stryer & Haugland. **1967**. Proc. Natl. Acad. Sci. **58**:719-726.)

Well-defined donor acceptor pair in a specifically labeled homologous series of Polyproline II helix. (Assume that R_0 is constant.)

Merrifield Solid Phase Synthesis of Peptide

Bruce Merrifield developed the solid phase method, but who pioneered the tBoc (and now Fmoc) protecting groups used in peptide synthesis?

Answer:

Lou Carpino (UMass Chem Dept.)

Absorption and Emission Spectra of Donor and Acceptor

FIG. 2.—(a) Absorption spectrum of the energy donor $(1-acetyl-4-(1-naphthyl) semicarbazide, ____)$ and the energy acceptor (dansyl-L-prolyl-hydrazide, ____) in ethanol; (b) emission spectrum of the energy donor (____) and the energy acceptor (----) in ethanol.

Excitation Scans measure Transfer Efficiency

$$\frac{F_{\rm A}(D+A)}{F_{\rm A}(A)} = 1 + \left(\varepsilon_{\rm D}C_{\rm D}/\varepsilon_{\rm A}C_{\rm A}\right)E$$

$$\downarrow$$

$$E = \left(\frac{F_{\rm A}(D+A)}{F_{\rm A}(A)} - 1\right)\left(\frac{\varepsilon_{\rm A}}{\varepsilon_{\rm D}}\right)$$

E has a 1/R⁶ dependence

$$E = \frac{R_0^6}{R_0^6 + R^6}$$

$$\downarrow$$

$$\frac{1}{E} = 1 + \frac{R^6}{R_0^6}$$

$$\downarrow$$

F1G. 4.—Efficiency of energy transfer as a function of distance in dansyl-(L-prolyl)_n- α -naphthyl, n = 1 to 12. The α -naphthyl and dansyl groups were separated by defined distances ranging from 12 to 46 Å. The energy transfer is 50% efficient at 34.6 Å. The solid line corresponds to an r^{-4} distance dependence.

ln r

4.0

 $\ln\left(\frac{1}{E}-1\right) = n\ln(R) - \ln(R_0^n)$

Single Molecule FRET (An Example, Zhaung et al.)

In Vivo FRET (An Example, Hasegawa et al.)

A RT + + + CMV CMV-bla Rz156 RT - - -

С

D

Е

Pos: CMV-bla

