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Models in Proteins Containing Subunits* 
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ABSTRACT: Models for subunit interactions are examined 
by means of interpreting ligand saturation curves. 
Equations are derived to indicate the effect of variables 
such as the strength of binding of the ligand, the geo- 
metrical arrangement of subunits, the strength of inter- 
action between subunits, the energy of the conforma- 
tion change, and the effect of nonidentical subunits. 
Rapid methods, i .e.,  equations and nomograms, are 
developed to fit theoretical curves to experimental data 

F or many years it has been known that the binding 
of oxygen to hemoglobin follows a sigmoid curve which 
differs appreciably from the typical Michaelis-Menten 
equation covering the same concentration range. An 
empirical equation designed by Hill (1910), Y = kpn/ 
(1 + k p ) ,  gave a reasonable approximation to the data 
with n = 2.6. Adair (1925) obtained a closer fit using a 
four-constant equation in which the constants related 
the successive affinity constants of oxygen to the four 
heme groups in hemoglobin. Adair’s equation did not 
provide any theoretical explanation for the changing 
affinity constants, but it was capable of fitting the data 
quite accurately. Pauling (1935) made the first attempt 
to relate the change in these constants to the geometry 
of the protein by assuming a single affinity constant and 
an interaction term which depended on the geometry of 

chemistry 3, 1977. 

Natl. Acud. Sci. U. S. 48, 684. 
Speyer, J. F., Lengyel, P., and Basilio, C .  (1962), Proc. 

Spotts, C .  R., and Stanier, R. Y .  (1961), Nature 192, 633. 
Srinivasan, P. R., and Borek, E. (1964), Science 145, 

548. 
Tissikres, A., Schlessinger, D., and Gros, J. (1960), 

Proc. Nutl. Acad. Sci. U. S. 46, 1450. 
Von Ehrenstein, G.,  and Lipmann, J. (1961), Proc. 

Nutl. Acud. Sci. U.  S .  47, 941. 

Comparison of Experimental Binding Data and Theoretical 

T t I I  0 1 1 T T I C A L  M O D E L S  I N  P R O T E I N S  C O N T A I N I N G  S U B U N I T S  

with a minimum of parameters. Applying these pro- 
cedures to the binding of oxygen by hemoglobin as an 
illustrative example, it is seen that a number of simple 
models can represent the published data accurately. In 
general it appears that unique mechanisms cannot be 
established from ligand saturation curves by them- 
selves, but the mathematical analysis of the curves indi- 
cates possible sources of additional information to make 
such distinctions possible. 

the four subunits. Excellent recent reviews on linked 
functions and binding of hemoglobin have been pre- 
sented by Wyman (1964) and Rossi-Fanelli et at. 
(1 964). 

The recent emphasis on the properties of proteins 
has highlighted the importance of the hemoglobin 
problem in several ways. In the first place, protein con- 
formational changes provide perhaps the best explana- 
tion for the “interaction” between heme groups during 
the binding of oxygen. This hypothesis is supported by 
the elegant studies of Perutz and co-workers (1964) 
who found that the hemes lie far from each other in the 
hemoglobin molecule and that a conformational change 
apparently occurs when oxygen is absorbed to hemo- 
globin. In the second place, the widespread observation 
of conformational effects in enzyme systems in general 
and in regulatory systems in particular together with 
the observation that most of these enzymes are com- 
posed of subunits indicates that the hemoglobin inter- 
actions may not be an isolated phenomenon but rather 
one manifestation of a general situation (Grisolia, 
1964; Umbarger, 1964; Gerhart and Pardee, 1962; 
Monod et al . ,  1963; Koshland, 1963). 
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Monod et al. (1965) have recently proposed an in- 
teresting new model to explain the hemoglobin satura- 365 
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tion curve. This model postulates that a protein com- 
posed of subunits must maintain symmetry during 
conformational changes. From this they deduce that 
the protein must exist in two forms, one of which con- 
tains all the subunits in one conformation, the other 
with all the subunits in a second conformation. With 
this model and the assumption that one form can bind 
O2 more strongly than the other they are able to fit the 
O2 binding data of L. Lyster (quoted in Monod et al., 
1965) very satisfactorily and predict that this may be a 
plausible model for control enzymes in general. 

Atkinson and co-workers (1 965) have also proposed 
an important model for ligand interactions which differs 
significantly from the model of Monod et af. (1965). 
In the cases of the enzymes phosphofructokinase and 
isocitrate dehydrogenase they find complex relation- 
ships between substrates and modifiers and are able to 
explain these results by a model which assumes pro- 
gressive changes in ligand site interactions. In this model 
binding of ligand at one site can either increase or de- 
crease the affinity of ligand at a second site, which can 
in turn affect the binding of ligand at a third site, etc. 

These significant studies and the mounting literature 
on subunits and conformations led us to an examination 
of interrelationships of conformational effects and sub- 
units. One of the particular difficulties in this area is the 
comparison of experimental data with theoretical 
models. It is already laborious to determine whether a 
given model is consistent with experimental data. Unless 
simplified procedures are available it is even worse to 
compare a variety of models to establish unique mecha- 
nisms. It seemed appropriate, therefore, to approach 
such questions as “How can experimental data be fitted 
simply and systematically to the predictions of theo- 
retical models?” “Can more than one model satisfy a 
given saturation curve ?” “Can theoretical derivations 
indicate what additional parameters should be investi- 
gated to distinguish between models ?” 

A cursory examination demonstrated that the number 
of potential models was very large. Therefore, it was 
decided to attempt to answer these questions in the 
framework of a model involving four subunits, one 
binding site per subunit, and one type of ligand. Not 
only would such a model be applicable to hemoglobin 
on which such extensive work has already been per- 
formed, but also the single structure found most fre- 
quently among enzymes involves four similar subunits 
(Schachman, 1963). Variables that were investigated 
included the geometrical relationship of subunits, the 
binding constant of ligand to protein, the strength of 
interaction between subunits, and the effect of non- 
identical subunits. The appropriate equations for 
various models were derived and the effect of individual 
parameters on the shapes of these saturation curves was 
established with the aid of a computer. The relation- 
ships obtained made it possible to develop a systematic 
procedure for fitting an experimental saturation curve 
to the calculated curves of a theoretical model. The 
procedure so developed was then applied to hemoglobin 
to determine which, if any, models fitted the data 
satisfactorily. The fitting of the data to hemoglobin and 366 

the comparison of the theoretical curves with each other 
made it possible to ascertain which of the intrinsic con- 
stants could be distinguished by saturation curves and 
what additional data would be required to obtain unique 
mechanisms. Although the approach is applied to a 
four-subunit protein in this paper for illustrative pur- 
poses, it is clear that the methods are readily applicable 
to other systems, containing differing numbers of sub- 
units. 

Definition of Terms. In all the models it will be as- 
sumed that the individual subunits of the protein can 
exist in two conformations, A and B, and that only 
conformation B binds the ligand S in significant 
amounts. Since the mathematics involves ES inter- 
actions, it applies directly to compounds which are 
bound, but do not react, such as oxygen binding to 
hemoglobin or inhibitors in enzyme systems. It would 
also apply to enzyme-substrate complexes when the 
amount of the ES complex is directly related to a 
measurable property such as activity. For example, an 
enzyme system in which the ES complex decomposes 
in such a way that the activity is proportional to the 
amount of the ES complex would give an activity- 
substrate concentration curve similar to the saturation 
curve. 

The substrate binding constant K. represents the 
intrinsic affinity of the ligand for an individual subunit 
and is defined according to eq 1. 

The transformation constant Kt represents the equi- 
librium constant for the conformation change from the 
subunit in conformation A to the subunit in conforma- 
tion B, as shown in eq 2 .  

This constant does not include the effect of changing 
interactions of subunits. 

To represent the interaction between subunits of 
different conformational structure, the constants Y4*, 
K.4B, and KBB will be employed.l In this connection 
it will be assumed that K A . ~  = 1 since a choice of any 
other number would simply reflect a relative shift in the 
standard state, rather than a significant change in the 
subunit relationships. K.4B and KBB are defined by 
eq 3 and 4 in which (AB) refers to interacting subunits, 
whereas (A) and (B) refer to noninteracting subunits. 

(3) 

~~ 

1 Some of the relationships between constants of this type have 
been discussed by Coryell (1939). 
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N ,=4Y 

10-2(s: log (S) 

FIGURE l :  Comparison of a sigmoid saturation curve (- ) with a Michaelis-Menten saturation curve ( - e -  

.-.). (A) Plotting N, vs. (S) and (B) on a plot of N, vs. log (S). On both plots, the levels of saturation (Ne = 
0.4, 2.0, and 3.6, corresponding to 10, 50, and 90% saturation, respectively) used to define the characteristic param- 
eters (So.s) and R,, and the concentrations corresponding to each, are indicated by dashed lines. 

(4) 

It is to be noted that eq 3 and 4 contain equal stoichio- 
metric amounts of A and B in numerator and denomina- 
tor and, therefore, the equilibrium constants in these 
expressions relate to the changes in the strengths of 
interaction between subunits and do not contain the 
energy of the conformation change itself. Thus, these 
constants represent the increased ( K  > 1) or decreased 
( K  < 1) stabilization of some conformations of the 
protein brought about by the interaction of subunits. 
For example, K A B  > 1 means that the interaction of AB 
is more favorable than the interaction of AA and tends 
to stabilize an AB neighbor with respect to an AA pair. 

For the “concerted” case the constants K,, K A B ,  KBB, 
etc., can be expressed as a single constant, Kk. Because 
an understanding of the meaning of this constant re- 
quires a description of the model, its definition is de- 
ferred to eq 25. 

The symbol Y is used to represent the fraction of 
binding sites occupied and can vary from 0 to 1.0 
(Pauling, 1935). The symbol N, represents the average 
number of molecules of substrate bound per molecule 
of enzyme as defined by eq 5 ,  where i represents the 
number of molecules of S bound to an individual mo- 
lecular species and n represents the number of subunits 
per molecular species. It is clear that both N, and i can 
range from 0 to n, but i can have only integral values, 
whereas N, can have fractional values. 

i = n  

i = O  

If the subunits are not identical but exist, for example, 

in two pairs two types of subunit interactions may exist. 
One illustrative example would be an interaction of the 
“head” of the a chain with the “tail” of the /3 chain as 
compared to the interaction of the tail of the cr chain 
with the head of the /3 chain. The added complications 
of this case will be discussed later. 

We shall generally refer to Y vs. (S), N, vs. (S), or N, 
vs. log (S) plots as “saturation curves.” For ease of 
presentation, the N. nomenclature will be used in this 
paper to emphasize the protein contains four subunits, 
although the Y nomenclature is more general and may 
be preferred in other situations. Interconversion to the 
Y system is readily achieved from the relation N, = 4 Y.  

In Figure 1A a typical sigmoid curve is compared to a 
classical Michaelis-Menten curve covering the same 
concentration range. In Figure 1B the same two curves 
are plotted on a log (S) plot in which case both curves 
are sigmoid. In comparing theory and experiment it will 
be useful to characterize these curves with two constants 
illustrated in the figure. (So, 5 )  will be used to refer to the 
value of (S) when Y = 0.5, i.e., when half the sites are 
saturated with ligand. R, will be used to refer to the ratio 
of ligand concentration at  Y = 0.9, i.e., at 90% satura- 
tion, relative to the ligand concentration when Y = 0.1, 
i.e., at 10% saturation (cf. eq 6). The symbol R, serves 
not only to aid the choice of a theoretical curve but 
allows an immediate comparison to Michaelis-Menten 
behavior since R, = 81(S0.5) for any system following 
the Michaelis-Menten equation. Obviously these ratios 
will indicate the sharpness of the Ne-log (S) curve, i.e., 
the curve will be steeper when a smaller change in (S) 
is required to convert from an average of 10% satura- 
tion to an average of 90% saturation. Thus an R, value 
less than 81 indicates a curve which is steeper than a 
Michaelis-Menten curve. 

In some experimental situations it will be desirable to 
compare points at greater extremes, e.g., (So.975), or at 
intermediate positions, e.g., (SO.*). In these cases R8‘, 367 
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Confwrnation A E 0 , B 5 0 

FIGURE 2: Schematic illustration of the various modes of binding the ligand S to the tetrameric enzyme for the 
four major cases discussed in this paper. Conformation A of the subunit is denoted by circles. Conformation B, the 
one capable of binding S, is denoted by squares. In the models involving a progressive change it is assumed 
that a subunit in conformation B is present only when S is bound to it. In the concerted model all con- 
formations change to B together. 

Ref’ ,  etc., can be defined as desired. In this article we 
shall define R, and R.‘ as shown in eq 6. 

substrate concentration when N. = 3.6 
substrate concentration when N, = 0.4 

- __ - 

substrate concentration when Ne = 3.9 
substrate concentration when N ,  = 0.1 

- - 

R, will be used to indicate the symmetry of the satura- 
tion curve around the mid-point and is to be calculated 
from the ratios of ligand concentrations at Y = 0.9, 
0.1, and 0.5, as shown in eq 7. The parameter R,‘ can 
be defined in an analogous way. 

(7) 

The ratio R, will obviously equal 1.0 for a curve which 
is symmetrical about Y = 0.5. From Figure 1 the 
symmetry is visually apparent in the N, vs. log (S) plots 
but not in the N, vs. (S) plot. Of course, R, (or any 
similar ratio, e.g., Ra’)  can be calculated from either 
curve. As will be apparent later, the choice of R. and 
R, or R,’ and R,’ may depend on the data that are 

368 available. 

The Models. For this paper a limited number of 
models of subunit interactions will be evaluated. All 
interactions will be assumed to occur in a single protein 
containing four subunits. For convenience in visualizing 
these effects a geometrical designation of the subunit 
interactions is helpful, and the various models will be 
referred to by descriptive phrases such as “tetrahedral,” 
“square,” “linear,” etc., following the nomenclature 
suggested by Pauling (1 935) (cf. Figure 2). 

The terms “tetrahedral,” “square,” etc. are used to 
clarify the permissible subunit interactions and do not 
necessarily correspond to the actual arrangement of the 
subunits in three-dimensional space. For example, the 
tetrahedral case assumes that each subunit can interact 
with each of the other three subunits. This mathematical 
relationship could be satisfied either by a tetrahedral 
array of subunits or by a square arrangement of sub- 
units in which diagonal interactions were allowed. 
Conversely, a tetrahedral geometry in which certain 
subunit interactions were excluded might give a final 
mathematical result describable by the square model. 
This would be the case for a molecule of 2a and 2p 
chains arranged in a tetrahedral geometry in which only 
a,p interactions occurred. 

In Figure 2 schematic representations of the four 
major cases we will consider are represented utilizing 
identical subunits. In the tetrahedral case each subunit 
presumably interacts with each of the other subunits. 
In the square case the subunits are arranged so that 
each subunit interacts with each of two neighbors, it 
being presumed that diagonal interactions are negligible. 
In the linear case it is assumed that there is no interac- 
tion between terminal subunits and, therefore, that the 
interior subunits each interact with two neighbors 

D. E. K O S H L A N D ,  J R . ,  G .  N E M E T H Y ,  A N D  D. F I L M E R  
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A "Square" geometry 
Number o f  
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FIGURE 3 : Schematic illustration of the various modes of 
binding and the number of subunit interactions for 
(a) the "square," (b) the "linear" geometry. Notation 
for the various forms of the subunits is the same as in 
Figure 2. 

When subunit interactions can occur the relationship 
of binding and interactions of subunits is much more 
complex. A schematic illustration of the conformation 
changes is shown in Figure 2. In Figure 3 some of the 
details of interactions of the square and linear cases 
are outlined for illustrative purposes. 

"Tetrahedral" Model. A tetrahedral arrangement 
results in four equivalent ways to bind one molecule 
of (S), six ways to bind two, four ways to bind three, and 
one way to bind four. The number of interacting pairs 
will be 3 A-B and 3 A-A for the AIBS species; 1 B-B, 
4 A-B, and 1 A-A for AzBnSa; 3 B-B and 3 A-B for 
ABS&; and 6 B-B for B4S4. When KaB # 1 and KBB 

@- 
1 2 '  

FIGURE 4: Schematic illustration of some relationships 
when nonidentical subunits are present. A case anal- 
ogous to the "square" geometry is shown in which 
only forms E, ES, and ESa are presented. Subunits in 
form A are denoted by circles or ellipses, subunits in 
form B by squares or rectangles. It is assumed that the 
enzyme consists of two pairs of identical subunits, 
denoted by a! (circles or squares) and (3 (ellipses or 
rectangles). Note that there are two possible forms of 
ES, with different interactions (indicated by brackets). 
In the case of unequal interactions, the a$ inter- 
actions, 1 '  and 2', differ from each other and from 
interaction 1. 

whereas the two terminal units interact only with one 
neighbor. The concerted case is represented in a square 
array merely for convenience, but this model does not 
depend on the geometry of the interactions since all 
subunits change simultaneously. The allosteric model of 
Monod et ul. (1965) utilizes such a concerted change but 
also assumes various symmetry requirements which 
are not an essential part of the concerted model shown 
here. 

In the case of the square and linear cases there is 
more than one type of interaction when two substrate 
molecules are bound, whereas in the tetrahedral and 
concerted cases there is only one distinguishable ar- 
rangement provided the subunits are identical (Figure 
2). Statistical weight of the various forms will be dis- 
cussed below. 

Derivution qf' Binding Equations. If there is no inter- 
action between subunits the degree of polymerization 
of the protein is irrelevant and the saturation curve will 
follow a typical adsorption isotherm such as the 

the constants derived above, this would have the form 

# 1 ,  the concentrations of enzyme molecules binding a 
given number of S molecules bound are given by eq 9-12. 
Substituting these equations into eq 5 the relationship 
for N. shown in eq 13 is obtained. 

Michaelis-Menten kinetic equation (1913). In terms of (9) 

of eq 8. (ES) = (A&SJ = 6K.~a4K~~[KsKt(s>lZ(Aq) (10) 

(ES) = (AIBS) = ~ K A B ~ [ K ~ K ~ ( S ) I ( A ~  
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( E S )  = (ASBS) = ~K.AB'[K,K~(S)] (A~)  (14) 

When KAB = 1 and K,K, = Kp', this equation reduces to 
the tetrahedral case equation derived by Pauling (1935). 

"Squnre" Cuse. The square case assumes four sub- 
units in a square pattern in which no interactions across 
the diagonal occur. The number of ways of binding S 

various bindings of ligand to individual subunits are as 
shown in Figure 2. Since the subunit interactions all 
change concomitantly with the conformation change, 
only one constant, K,, is needed to encompass the 
equilibria previously allocated to K,, KAB, KBB, etc. The 
concentrations of ESI and the saturation equation 
similar to those shown above are given in eq 25-30. For 
this case, form B4 with no S absorbed is included to 
make the equation analogous to previously derived 
equations (Monod et a/., 1965). This is in contrast to the 
derivations shown above in which conformation change 
for individual subunits occurred only when a molecule 
of ligand was bound. The saturation curve of eq 30 can 
be obtained from the equation derived by Monod et ai. 
(1965) if it is assumed that only one of the two forms 
of the enzyme is capable of binding S. 

and the number of A B  and BB pair interactions are (ES) = ~ K A B ( ~  f KAB)[%K~(S)] (A~)  (20) 
given in Figure 3 .  The concentration of the various 
species are given by eq 14-17 and the values of N, by 
eq 18. When K.AB = 1 and KBB > 1, this equation re- 
duces to the square case equation derived by Pauling 
(1935) for hemoglobin. 

= K,4B(2K.4B2 + 2KBB + 
KAB f KABKBB)[K~K~(S)] ' (A~)  (21) 

An interesting case occurs when K.kn # 1 and KBB 
= 1. These assumptions require that the interactions 
between AA conformations are the same as the inter- 
actions between BB conformations but are different 

from the interactions between the two unlike conforma- 
tions. No assumption is made at this point of whether 
the A B  interactions are stabilizing or destabilizing. The 
relationship of N, to the individual constants for this 
example is given in eq 19. 

"Linear" Model. In the linear case the two interior 
subunits react with each of two neighbors whereas the 
two terminal subunits react with only one neighbor. 
Therefore, the subunits can behave differently even 
ihough they may each have identical tertiary structure. - . .  
The number of ways of binding S and the number of 

(30) 

Nonidentical Subunits. SQUARE CASE. In each of the 
above derivations it has been assumed that all subunits 

4KdSN1 + K,(S)13 
KteW4 + [I + K,(S)14 

A B  and BB pair interactions are given in Figure 3. The N,  = 
various species of ES complexes and the saturation 
equation are shown in eq 20-24. 

"Concerted" Model. In the concerted model the con- 
formations of all subunits change simultaneously. The 370 
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are identical mathematically. By slight changes in the 
derivations alternative equations involving nonidentical 
subunits can be obtained. Because no new principles are 
involved and because a wide variety of possibilities 
makes the derivation of all the permutations of pre- 
viously outlined cases extremely laborious, only some 
representative cases involving the square geometry will 
be elaborated. 

A square case with two types of chains would behave 
as shown schematically in Figure 4. In this case Q and 
p chains are arranged alternately and it is presumed, as 
discussed before, that diagonal interactions, i.e., CY-a, 
p-(3, are excluded. This appears to be the case in hemo- 
globin (Perutz et a/., 1960). 

Several possible alternatives still exist. For example, 
the two subunits may have different intrinsic binding 
constants. Equations 31 and 32 express these assump- 
tions 

in which K,, refers to the binding constant of the Q 

chain and K., to the 6 chain. Again, it is assumed that 
only the B conformation binds substrate. Another 
alternative is that the constant for the conformation 
change might be different, i.e., K,, # Kta. 

For the case in which K, varies and Kt is constant, 
eq 33, analogous to eq 18, arises. It is to be noted that 
the KsKt terms of eq 18 are now expanded to account 
for differences between the Q and p chains, but that K, 
and K,  always occur together. Thus, it is apparent that 
the form of this equation would be the same if K, were 
held constant and two conformation constants Kt,, and 

A second way in which nonidentical subunits might 
affect the saturation curve is by means of changed values 
for the interactions between subunits, either in K . ~ B  
or KBR (cJ. Figure 4). For example, the interactions 
along bracket 1 in Figure 4 are not necessarily the same 
as the interactions along bracket 2. Referring to the in- 
teraction along bracket 1' in Figure 4 as A,B, and along 
bracket 2 as A,A, the two interaction constants could be 
characterized as KAau, # KBgAa. This type of inter- 
action can be considered pictorially as "rectangular" 
following a suggestion of Roughton er al. (1955). For 
such a case, assuming all KAB values = 1, the con- 
centrations of the various ES complexes are given by eq 
34-37 and the saturation curve is given by eq 38. 

Generalized Equution. Obviously, by altering the 
assumptions mentioned at the outset, many other vari- 
ants of the saturation equations can be produced. It 
would not be fruitful to go through the derivation of all 
of them. One case is of sufficient interest to be men- 
tioned here, using the square geometry as an illustrative 
example. If one assumes that the transformation A -+ B 
can take place even when no ligand S is bound to the 
subunit, a situation intermediate between the square 
case and the concerted transition is obtained. Several 
new forms of the enzyme-ligand complex can exist 
besides those listed in Figure 3 ,  namely A3B, A2B2, 
AB3, Bi, A2B2S, AB& BiS, AB3&, B&, and B4S3. By 
deriving expressions for the concentration of each 
species, eq 39 is obtained when K.hB = 1. By com- 
paring this equation with eq 18, substituting K . ~ B  = 

1 in the latter, it can be seen that eq 39 can be ob- 
tained from eq 18 by factoring out 4K,(S) from the 
numerator of the latter and then replacing K,(S) every- 
where in the numerator and the denominator by 

Kta were substituted for K,. In other words, the N, (ES) = 4[K&t(S)I(A 4) (34) 
dependence does not indicate whether the change oc- 

It is noted, of course, that both equations contain an 

to determine all the constants characterizing the satura- 

curs in K, or K, as the identity of the subunit changes. (ESJ = 2(KBaBp f KBBBa + I)[K&t(S)12(A4) (35) 

additional constant so that more data would be needed (ES3) = ~KB,B,KBBB,[K,K~(S)I~(A~) (36) 

tion curve. (ESJ = KB~B~'KB~B,~[KSK~(S)I'(A,) (37) 
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FIGURE 5: Examples of saturation curves for the various interaction geometries discussed in this paper and a com- 
parison with a Michaelis-Menten curve (shown as ---) having the same binding and transformation constants (K .  
and Kt) ,  but no subunit interactions (KAB = KBB = 1). K.AB = 1 for all curves. Constants for the concerted tran- 
sition were chosen to give the same over-all constant for A4 + 4s -, B4S4 as the square case (cf. discussion 
in text). 

1 + KB(S). This is as expected, because for each form of 
the enzyme listed in Figure 3A, there are forms in which 
one or more BS units are replaced by B units, each such 
form giving rise to a new term in the equation for N,. 

Computation of Binding Curves. Binding curves giving 
N ,  as a function of S were calculated and plotted using 
an IBM 7094 and a Calcomp digital computer plotting 
unit. Since it was desired to compare N, using com- 
parable coordinates over wide variation in S, N. vs. 
log (S) plots were found to be more useful than N. vs. 
(S) plots. In the log (S) plot more discrimination can be 
obtained at low concentrations of (S). In addition, the 
curves are easily tested for symmetry about the mid- 
point, and changes in the value of K.K, do not change the 
shape of the Ns-log (S) plots for the linear, tetrahedral, 
and square cases, making comparison of results easier. 

Results 

Effect of Changing Concentrations on Saturution 
Curves. Illustrative curves for the square, tetrahedral, 
linear, and concerted cases are shown in Figure 5. On 
comparing the curves with similar values for constants 
K. and Kt and moderate interactions between B con- 
formations, i.e., KBB = 10, it can be seen that the steep- 
ness of the curve increases as the total number of sub- 372 

unit interactions increases, i.e., linear < square < tetra- 
hedral. Moreover, the mid-point of the N,-log (S) 
curve shifts to lower S concentrations, Le., for the same 
binding and conformation constants, less ligand con- 
centration is required to half-saturate the enzyme. 

The choice of constants for comparing the concerted 
mechanism with the others is less easy since the con- 
formational change in the concerted case involves four 
subunits rather than 1. Therefore, numbers were chosen 
for K, and K,, in the concerted case to give the same 
value for the equilibrium constant of the over-all proc- 
ess, Aa + 4s = B4Sa, as in the square case shown in the 
same figure. By normalizing the two curves in this way 
it is seen that the concerted model curve is considerably 
steeper than the square case curve but the substrate 
concentration for half-saturation in the concerted model 
is much greater. 

Although the different geometries give different 
saturation curves if the same intrinsic constants are 
chosen, the curves can be made to coincide closely by 
the proper selection of the various equilibrium con- 
stants. This is illustrated in Table I where values for 
N, at different substrate concentrations are listed for 
the various models. The values do not coincide perfectly 
at all substrate concentrations, but accurate experi- 
mental data would be needed to distinguish even be- 
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FIGURE 6:  Examples of binding curves for the “square” geometry, showing the effect of changing K.Kt (--------- ) or 
KBB (- ). K.kB = 1 for all curves. A Michaelis-Menten curve is shown ( - . - . - a )  for comparison. 

TABLE I :  Comparison of N, Values at Several S Con- 
centrations for Various Geometries when K,, K,, and 
KBB Values Were Chosen by a Trial and Error Method 
in Order to Give Similar Curves. 

N, Values 

Tetra- Con- 
hedral Square Linear certed 

K,Kt = K&t = K&L = K, = 0 . 9  
96 100 io0 x 1 0 4  

(3 3 10 20 10-1 
K B B  = KBB = K B B  = Kt, = 

0.08  0.05 0.05 0.01 
5 X 0 . 7 2  0.57 0 .68  0 . 3 0  
9 X 1.78 1.71 1.77 1.56 

2 X 10-3 3 .26  3.43 3 .24  3 .59  
5 x 10-3 3 .79  3 .88  3.77 3 .90  

10-2 3 .90 3.95 3 .89  3.97 

1 x 10-3 2 . 0 0  2 .00  2 . 0 0  2 . 0 0  

tween the cases selected by a trial and error method 
(cJ Table I). (Later the systematic fitting of curves will 
be discussed.) 

It is to be noted that the assumptions that K A B  = 1 
and K B B  = 1 for the square, linear, and tetrahedral 
cases are equivalent to the assumption that there is no 
net subunit interaction, Le., no net change in stability 
caused by the conformation change. These assumptions 

convert the saturation curves for the square, tetrahedral, 
and linear cases to the Michaelis-hlenten equation. 
In the concerted model the assumption that Kt, >> 1 will 
convert its saturation curve to the Michaelis-Menten 
equation also. 

Effect of Changing the Various Equilibrium Constants 
on the Binding Curves. Although the trial and error 
method of fitting theory and experiment can be used, it 
was obviously desirable to obtain a less laborious 
method for this comparison. To do this it was first 
necessary to explore the effect of the individual equi- 
librium constants on the shape and (S) values of the 
saturation curves. 

One immediate conclusion arises from the forms of 
the mathematical expressions. Except for eq 30 and 
38, K.  and Kt always’ appear together as a product and, 
therefore, it will be impossible to obtain separate values 
of K. or Kt by binding curves alone. Changing K, or Kt  
together or separately shifts the binding curve along the 
substrate concentration axis without changing its shape 
(cf. Figure 6). In the concerted case, Kt and KBB are not 
separable using only saturation data. 

In Figure 6 some comparisons are given for various 
examples of the square case in which K.Kt or KBB are 
varied while KaB is held constant. When KAB = 1 and 
KBB > 1, interactions between adjacent B conformations 
are more attractive than A-A interactions, whereas 
A-A and A-B interactions are equivalent. It is observed 
that increasing KBB shifts (Sa.&) to lower values and 
tends to sharpen the transition, i.e., decreases R.. 

When KBB < 1 the curve tends to flatten at N ,  = 2, 
and when KBB << 1 it even may flatten for a very con- 373 
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FIGURE 7: Examples of binding curves for the “square” geometry at constant KBB, showing the effect of changing 
KAB. KBB = 1 and KsKt = 102 for all curves. A Michaelis-Menten curve is shown (-.-.--) for comparison. 

siderable range of substrate concentration. Thus, for a 
ligand of limited solubility, an experimental saturation 
curve of a protein containing four equivalent subunits 
with four equivalent binding sites might appear to 
indicate only two sites solely because KBB is con- 
siderably less than 1. 
In Figures 7 and 8 the effect of KAB when KBB and 

KuKt are held constant is seen. Since KBB = 1 in Figure 
7 the stabilities of AA and BB conformation are the 
same. If KAB > 1 intermediate forms are stabilized 
relative to AA or BB, while if KAB < 1 intermediate 
forms are relatively less stable. It is notable that all 
curves pass through the same value of N. = 2 and that 
variations in KAB tend to exert effects opposite to 
changes in KBB. The latter observation can be pursued 
quantitatively, and it is found that for each choice of 
KBB there is a value of KAB which leads to a curve 

Thus a Michaelis-Menten curve does not per se exclude 
the existence of interactions between subunits. The 
relationship of eq 40 can be generalized to any set of 
curves described by eq 18. For each family of curves 
which are identical in shape and merely differ in posi- 
tion along the abscissa, the two interaction constants 
are related by eq 42. 

In this equation, c can be obtained by selecting, from 
those curves for which KAB = 1 (cf. Figure 7 or 9), the 
one coinciding best with the experimental curve. Then 
c = I/KBB for this curve, and other combinations of 
K.4B and KBB satisfying the experimental data can be 
obtained from eq 42. Using this relationship, the bind- 
ing curve of eq 18 becomes eq 43. 

identical with the Michaelis-Menten curve. The re- 
lationship of constants required to satisfy this condition 
is given by eq 40. 

It was found that eq 42 also applies to the tetrahedral 
case so that in that case also the family of curves can 
be reduced to a single set, corresponding to KAB = 1. 
These relationships were helpful in developing the pro- 

Fifting Curves to Experimental Data. To test any 
model it is necessary to derive the theoretical curve 
which most closely approximates the data and compare 
it with the theoretical curves deduced from other 

N, = 4K~d&t( s )  (41) models. When several models are to be tested and each 
model contains several independent parameters, curve 

KAB = KBB1I1 (40) cedure outlined below. 

which on substitution into eq 18 reduces the relation- 
ship to a Michaelis-Menten type expression (4 eq 41). 

1 + KB&Kt(S) 

D. E. K O S H L A N D ,  JR . ,  G. N ~ M E T H Y ,  A N D  D. F I L M E R  



V O L .  5, N O .  1, J A N U A R Y  1 9 6 6  

N,=4Y 

log (SI 
FIGURE 8: Examples of binding curves for the “square” geometry, showing the effect of varying both KAB and KBB 
simultaneously. K,Kt = lo2 for all curves. Curves with KAB = constant are asymptotic at low (S), curves with the 
ratio K B B / K A ~  = constant are asymptotic at high ( S ) ,  curves with KBB = constant intersect at N, = 2.0. 

fitting by trial and error is excessively laborious. Al- 
though computers can be used and least-squares meth- 
ods are available, these tools are inconvenient and ex- 
pensive for routine use. Unless a more rapid method 
of curve fitting could be obtained, comparison of theory 
and experiment for more than one model would be 
prohibitive in time and money, Fortunately it was found 
that equations and nomograms could be devised which 
allow a choice of very good fits by the measurements of 
only three points on a sigmoid curve. The points selected 
were the substrate concentration at 50% of saturation, 
(So.& and two points near the extremes of the saturation 
curve, e.g. ,  at 90 and 10% saturation. For convenience 
the latter two numbers are used as a ratio, R., since this 
ratio is also useful as an indication of the steepness of 
the curve. 

Taketa and Pogell (1965) have used similar pro- 
cedures to obtain nomograms for the n of the Hill 
equation. They found this parameter useful for char- 
acterizing the steepness of sigmoid curves and applied 
it to some characteristic enzyme data in the literature. 
Their procedure is valuable and the number n gives a 
convenient index of the steepness of the curve. How- 
ever, since the models discussed here are more complex 
and do not follow the Hill equation, it was necessary 
to develop more detailed procedures for the more 
precise curve fitting required. 

In Figure 9 log R,’ is plotted as a function of KBe for 

the linear, square, and tetrahedral cases when KAB = 1. 
In Figure 10 the relationship -[log K.Kt + log (S0.31 
is plotted vs. log KBB for the same three geometric 
models. 

From an experimental saturation curve the value of 
R. is obtained. From Figure 9 the value of KBB cor- 
responding to this value of R, is then read for each 
geometric model. The value of KBB is used in Figure 10 
to obtain the appropriate values for log K,Kt + log 
(s0.5). From this number and the observed (S0 .5 )  the 
value of K,Kt is calculated. The last two steps can be 
simplified by the use of the nomogram in Figure 11.  
From the lines of Figure 10 it is clear that the data are 
related to each other by eq 44, where 0 = 1 for the 
square case,’ 1.5 for the tetrahedral case, and ~ 0 . 7 5  
for the linear case. The significance of this relationship 
will be discussed in Appendix A. 

The nomograms are designed so they can be used 
with either R, or RBI. In some experimental situations 
the data may be limited to the l0-90% saturation 
range, in which case R, would have to be used. In other 
cases, as will be discussed in the application to hemo- 
globin, both values may be useful. From the nomo- 
grams of Figure 11  either R, or R,’ can be used to ob- 
tain the other constants of the theoretical’model. In 375 
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FIGURE 9: The parameter characterizing the sharpness of the transition of the saturation curve (RBI) as a function of 
KBB for various geometries. If only R. is known for a saturation curve instead of Rat,  KBB can be obtained from log 
R, by first determining the corresponding value of log R.‘ from one of Figures 11-13, and then using Figure 9 to 
determine KBB. 
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FIGURE 10: The quantity -[log KsK, + log (S0.d] as 
a function of KBB for various geometries. 

Figures 9 and 10 only R.’ is listed as a function of KBB. 
If R. was obtained instead of Rat ,  the value of R.‘ cor- 
responding to R, can be obtained from the nomogram, 
and this value can then be inserted into Figures 9 and 10 
to obtain KBB. 

It is possible to  use Figures 9-11 and 13 even if KAB 
# 1 by using the relationship of eq 40 or 42. For a 
family of curves of known (S0.J the two interaction 
constants are obtained from eq 42 and c is obtained 
from Figure 9 or 10 as discussed above. When a pair of 
values for KAB and KBB is selected, K,K,  can be de- 376 

Lag ~ , ~ o g  R‘, 

-4 

Log s o 5  Lag K , K ,  

FIGURE 11:  Nomogram for the “square” geometry, 
correlating K,Kt with the characteristic parameters of 
the saturation curve, (So.5) and R. (or Ra’) for KAB = 
1. The same nomogram can be used for curves charac- 
terized by either R. or by R a t ,  by using the appropriate 
scale on the right-hand axis. The value of K,K, ap- 
plicable to a given saturation curve is obtained by con- 
necting the appropriate log R, and log (SC,.J values 
by a straight line and reading the interaction of this 
line with the axis for log KBKt. For example, a saturation 
curve characterized by (So.a) = and R. = 10 
corresponds to log K,Kt = 1.3, or K.Kt = 20, as 
shown by the dashed line. 

D. E. K O S H L A N D ,  J R . ,  G .  N i M E T H Y ,  A N D  D. F I L M E R  



V O L .  5, N O .  1 ,  J A N U A R Y  1 9 6 6  

- 12 

-- 1.4 

-- I 8 

10--20 

I I 
I 

0 

I 

- 2  

-3  

-4 

-It I 

-- 

-- 

-- 

-- 

-- 

-- 

t 

-3- 

- 2  

- I 

0 

I 

2 

3 

4 

5 

i 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

-- 

0 6 i 0  

15 

I O +  

-E30 

-4t I 

FIGURE 12: Nomogram for the “tetrahedral” geometry, 
correlating K,Kt with the characteristic parameters of 
the saturation curve (s0.5) and R. (or RB’) for KAB = 
1. For use of the nomogram see the legend to Figure 11. 

termined from Figure 10 or 11 since these plots are 
dependent only on KBB and not on KAB (cf. Figure 7 ) .  

In the case of other interaction geometries, i .e.,  linear 
and tetrahedral, the same procedures can be followed. 
Corresponding curves are shown in Figures 9 and 10 
and nomograms analogous to Figure 11 are shown 
in Figures 12 and 13. 

If the subunits are not identical, the constants K,  and 
Kt may conceivably be split into four constants desig- 
nated K,,, KeB, K, ,  and KtB.  For a given value of R. 
and a selection of KBB, the ratio of K,, and KSB is fixed 
and vice versa. Figures 1 4  and 15 show the relationships 
of nonidentical subunits analogous to those previously 
shown in Figures 9 and 10 for identical subunits. 

The parameter R, or A,’ describing the degree of 
asymmetry of the curves can also be used in some cases 
to characterize saturation curves. However, it has been 
found that the curves for the square and tetrahedral 
cases are always symmetrical around the mid-point 
where N, = 2 on the N.-log (S) plot. The mathematical 
proof of this observation is outlined in Appendix 
B. In the linear case, the binding curve is asymmetrical, 
i.e., R, # 1, and increases with increasing values of KBR. 

The dependence of log R, on K ,  for the concerted 
case is shown in Figure 16. The relationship between 
log (S0.5) and the various constants is given in eq 45. 
The nomogram expressing the relationship of Figure 16 
and eq 45 is given in Figure 17. 

Application to the 02 Binding Data of Hemoglobin. As 
an illustration of the applicability of these procedures to 
experimental situations, the equations are applied to the 

FIGURE 13 : Nomogram for the “linear” geometry, cor- 
relating K.K, with the characteristic parameters of the 
saturation curve (s0.5) and R. (or Re’) for KAB = 1 .  
For use of the nomogram see the legend to Figure 1 1 .  

O2 binding data of hemoglobin. Since there are numer- 
ous binding studies of oxygen to hemoglobin and there 
are a number of different models, it was necessary to 
limit the number of applications and therefore four 
illustrative experimental situations were chosen. The 
first two were based on the data of Rossi-Fanelli et al. 
(1961) on human hemoglobin, at two different ionic 
strengths. They illustrate the changes in position and 
shape of the curves when ionic strength is varied. 
The third is taken from a study by Roughton et a f .  (1955) 
on sheep hemoglobin. The last is from the data of 
L. Lyster (quoted in Monod et al., 1965) on horse hemo- 
globin which is quite similar to that of Rossi-Fanelli’s. 

Theoretical curves were obtained using the nomo- 
grams and procedures described above for each model, 
i t . ,  square, tetrahedral, linear, and concerted. The only 
two parameters required to obtain the theoretical equa- 
tions are R. and (So.s) and the values of these two num- 
bers which were used in the calculations are listed in 
Table 11. To illustrate the type of fits obtained, a theo- 
retical curve for each of the different models is shown 
in relation to the high ionic strength data of Rossi- 
Fanelli in Figure 18 and the fit of one theoretical model 
to all four sets of data are shown in Figure 19. 

It is seen that the theoretical curve obtained from the 
square model agrees well with the high ionic strength 
study of Rossi-Fanelli et al. (1961). The same is true of 
the tetrahedral model whereas the linear and concerted 
models fit very poorly. As an aid in presenting the other 
data briefly, we shall give the square and tetrahedral 
curves from Figure 18 a rating of +++ to indicate 
a very good fit to the data, and the linear and concerted 
cases relative ratings of + to indicate a rather poor fit. 
In Table I11 a summary of the relative agreement be- 377 
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FIGURE 14: The parameter R, as a function of KBB for the “square” geometry with nonidentical subunits. In the 
case shown here, the binding constants K., and K., are unequal. The labels on the curves indicate the value 
of the ratio K8JKap The ratio 1.0 corresponds to the square case treated before. 

C l  
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FIGURE 15: The quantity -[log K,Kt + log (SC,.~)] as 
a function of KBB for the “square” geometry with 
nonidentical subunits. Curves are shown for the case 
described in the legend of Figure 14. 

tween theory and experiment for the different experi- 
mental situations is given. It is to be noted that the best 
fit for all four curves is obtained by the square model 
closely followed by the tetrahedral model. The linear 
and concerted cases are definitely poorer. The above fits 
were obtained using R,’ and (S,J). When the same 
process was repeated using R. and (So.6) the results of 
Figure 20 and Table IV were obtained. It is to be noted 
that the square case now fits very well for all four sets of 
data, and the same is true for the tetrahedral model. 378 
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FIGURE 16: The parameter R,’ as a function of Kt, for 
the concerted transition case. If only R. is available 
for a saturation curve, KBB can be obtained with the 
aid of Figure 17 in the manner described in the legend 
of Figure 9. 

The linear and concerted models still give clearly less 
good representations of the experimental data. If the 
binding data were perfectly accurate and the models 
were completely correct, the same curve should ob- 
viously be obtained regardless of whether R, or R,’ is 
utilized. This situation is essentially true for the square 
and tetrahedral models of curves B and C. In the case of 
curves A and D, Le., the low ionic strength curve of 
Rossi-Fanelli et al. (1961) and the data of L. Lyster 
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TABLE 11 : Characteristic Parameters of Hemoglobin Binding Curves. 

-- 

-- 

Parameters of Binding 
Curve 

Experimental Conditions 
log 

t Hb log log (So.5) ( S O . 6 )  

Expt Reference Species (“C) pH Buffer Concn RB’ R. (mm) 

A Rossi-Fanelli Human 20 7 . 0  2 . 5  X M phosphate 2 X 1 0 - p ~  2 . 0  1 .24  0 .36  2 . 3  

B Rossi-Fanelli Human 20 7 .0  2 . 5  X IO-’ M phosphate 2 X M 1 . 4  0 .70  0 .96  9 .1  

C Roughton Sheep 19 9 . 3  Borate 3 4 %  1.26 0 .67  0.63 4 . 3  

D Lyster(quoted Horse 19 7 0 . 6  M phosphate 4 . 6 %  1.78 0 .74  1.00 10.0 

et af., 1961 

et al., 1961 

et al., 1955 

in Monod 
et al., 1965) 
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FIGURE 17: Nomogram for the concerted transition, 
correlating K,  with the characteristic parameters of the 
saturation curve, (S0.5) and R. (or Rs‘). For use of the 
nomogram see the legend to Figure 11.  

(quoted in Monod et al., 1965), the fit of R. is definitely 
better than with R8‘. Since the R,‘ utilizes data at the 
extremes, Le., N. = 3.9 and 0.1, whereas R. utilizes data 
nearer the middle of the curve, i.e., N. = 3.6 and 0.4, 
this could mean that the data were less good at the ex- 
tremes of binding for curves A and D. It could also, of 
course, mean that the models are not quite correct in 
these two cases. A choice between these two alternatives 
is not possible at the moment. 

The Hill (1910) equation was tested only for 
a few examples but fit the data less well than 
the square and tetrahedral models. Although 
the theoretical curves were obtained in each case 
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FIGURE 18: Comparison of the agreement between 
theory and experiment for various models and the 
oxygen binding data of hemoglobin. The parameters 
(So.s) and R.’ were used to fit the curves. The experi- 
mental points are taken from the data by Rossi- 
Fanelli et al. (1961) at high ionic strength. The line for 
the “square” geometry is identical with curve B of 
Figure 18. For the other geometries, the curves are 
drawn only where they do not coincide with the curve 
for the “square” case. 

with the help of a computer, it is to be noted that the 
appropriate parameters in Table V were obtained 
simply from the nomograms and the two constants, 
(SO.&) and either R. or R e f .  Thus, it is relatively simple to 
test a given theoretical model, and a computer is helpful 
but certainly not necessary. A trial and error procedure 
becomes excessively laborious. 3 79 
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FIGURE 19: Application of the saturation equation for 
the “square” geometry (eq 18 with KhB = 1) to the 
oxygen binding equilibrium of hemoglobin. Experi- 
mental points, taken from work by Rossi-Fanelli et al. 
(1961) at low ionic strength (A) and at high ionic 
strength(B), byRoughton etal .  (1955) (C), and by Lyster 
(quoted in Monod et al., 1965) (D) are shown by filled 
circles; the theoretical curves fitted to them are shown by 
full lines. The parameters 60.~)  and R,’ (= So.ns/So.o2J 
used to fit the curves are listed in Table 11. The equili- 
brium constants K,K, and KBB for each curve are listed 
in Table V. 

IOQIO,) 

FIGURE 20: Application of the saturation equation for 
the “square” geometry to the oxygen binding equi- 
librium of hemoglobin. The parameters (s0.5) and R. 
(= S O . ~ / S ~ . ~ )  were used to fit the curves. Otherwise, 
the data used are identical with those of Figure 18. 
The parameters used are listed in Table 11, the equi- 
librium constants in Table V. 

TABLE 111: Relative Agreement of Theory and Experi- 
ment for “Linear,” “Square,” “Tetrahedral,” and 
“Concerted” Models to Hemoglobin Saturation Curves 
Using R.’ and (SO.5) . ‘  

Relative Agreement on Scale of + to + + + 
Exptl “Tetra- “Con- 
Curve “Square” hedral” “Linear” certed” 

A ++ + ++ + 
B +++ +++ + + 
C +++ +++ + + 
D +++ +++ ++ ++ 

0 Fitting procedure involved R.‘ and (Sa.a) and the 
nomograms of Figures 11-13 and 17. Relative fit of 
curve to data based on Figure 18 as described in text, +++ being a very good fit, + being a curve that fits 
only part of the range. 

As illustrated above, it will frequently be desirable to 
pick additional points if agreement between theory and 
experiment is not good or if further confirmation of a 
given theoretical model is needed. Obviously, nomo- 
grams with other R, values could be devised, e.g., using 
N. = 3.0 and 1.0. Whether added work required for 
such additional computation is desirable depends on the 
accuracy of the experimental data. 380 

TABLE IV: Relative Agreement of Theory and Experi- 
ment for “Linear,” “Square,” “Tetrahedral,” and 
“Concerted” Models to Hemoglobin Saturation Curves 
Using R. and (So.&. 

Relative Agreement on Scale of + to +++ 
Exptl “Tetra- “Con- 
Curve “Square” hedral” “Linear” certed” 

A +++ ++ +++ + 
B +++ +++ ++ + 
C +++ +++ + ++ 
D +++ +++ ++ ++ 
4 See Table 111. 

In Table V the numerical values for K.K,, etc., used 
to generate the curves giving the best fit for each of the 
models are given. It is to be noted that these numerical 
values differ widely for over-all curves that are very 
similar. Thus if it were possible to measure some of these 
parameters, for example, KBB, independently, a final 
decision between the models which were indistinguish- 
able on the basis of the saturation curve might emerge. 

The allosteric model of Monod et al. (1965) fits the 
data of L. Lyster (quoted in Monod et al., 1965) very 
well, whereas the concerted model fits it poorly. This 
may seem contradictory, since the concerted model is 
also based on the assumption of a simultaneous change 
in all subunit conformations. The reason for the dif- 
ference is the extra parameter present in the allosteric 
model. There is no reason to add such a parameter 
to the square model since it fits the data already (cf. 
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TABLE v: Constants Characterizing the Theoretical Hemoglobin Binding Curves Giving the Best Fits to the Data. 

“Square” “Tetrahedral” “Linear” “Concerted”e Exptl ~~ 

Curve KX,b KBB‘ K&t K B B  K X t  KBB KS Kt, 

Based on R.’ [= (So.97dS~.~2dl and (S0.J 
A 8 . 7  X 5 . 0  9 . 3  X 2 . 8  6 . 5  X 13.0 1.24 0.35 
B 8 . 8  X 12 .5  8 . 3  X 5.6 5 . 8  X 50.0 0.65 0.17 
C 1 . 3  X 17.4  1 . 3  X lo-* 6 . 8  6 .5  x 10-3 120.0 1 .90  0.63 
D 1 . 5  X 6 . 7  1 . 6  X 3 . 5  8 . 9  X 25.0 0 .36  0.28 

Based on R, [= (S~.g/So.dl and (S0.s) 
A 1.47 X IO-’ 2 . 9  1.86 X 10-l 1 .8  1 .20  x 10-1 5 . 5  0.95 0.52 
B 8 . 1  X IO+ 13.5 7 . 3  X 6 .1  2 . 6  X 150.0 0.63 0.17 
C 1 . 6  X 14.8 1 . 3  X 6 . 7  2 . 2  X 500.0 1.60 0.15 
D 9.3 x 10-3 10.7 8 . 3  x 10-3 5 . 2  2 . 8  X 116.0 0 .50  0 .20  

= Concerted case: [K.] = mm-1; K,, = dimensionless. K,Kt has dimensions of mm-l. KBB is dimensionless. 

Figure 21). The fact that the concerted model requires an 
extra parameter to give agreement does not, however, 
a priori mean that it is incorrect. The number of param- 
eters and the accuracy of models are discussed below. 

Discussion 

The mathematical relationships to a certain extent 
speak for themselves. Some qualitative conclusions, 
however, which are drawn from these saturation curves 
and their application to a specific curve perhaps deserve 
emphasis. 

I .  Evidence for a Given Mechanism from a Saturation 
Curve. Although it is quite clear that accurate experi- 
mental data can in certain cases distinguish between the 
various models, it is also evident that different constants 
can be chosen for each geometry; these constants are 
capable of giving very similar curves. In many cases the 
points which deviate significantly from each other are at 
the extremes of ligand concentration where the experi- 
mental data may be most difficult to obtain. Further- 
more, it is seen that wide variation in the steepness of 
curves, their point of half-saturation, their binding con- 
stants, etc., can be obtained with rather simple models 
containing a minimum of arbitrary parameters, i .e. ,  
without assuming nonidentical subunits or differences 
in the orientation of one subunit to another. For ex- 
ample, in the case of hemoglobin a fit to the experi- 
mental data which is within experimental error can be 
obtained by more than one model of subunit interac- 
tions involving rather wide variations in intrinsic con- 
stants. It seems probable, therefore, that saturation 
curves per se will not be capable of establishing unique 
mechanisms. 

Furthermore, it seems clear that even given a single, 
unique mechanism it will be frequently impossible to 
obtain unambiguous values for individual constants. 
Thus K. and Kt appear together as products in many of 
the expressions and, therefore, it would be impossible 
to obtain specific values for these constants even if the 

data were perfectly accurate. Similarly, only the ratio 
of KAB to KBB‘/’ can be obtained because the saturation 
curves have the same shape for a constant value of this 
ratio. 

The accuracy of the fit between experimental data and 
theoretical model is always made easier by increasing 
the number of arbitrary parameters. In some cases 
these added parameters arise of necessity, e.g., to allow 
for known differences in subunits, but each added 
parameter included in the expression requires that 
alternative models with equivalent numbers of ad- 
justable parameters be tested. Thus if the fit to the ex- 
perimental data demands additional parameters, the 
probability that a unique mechanism can be established 
by a saturation curve decreases. 

2. Distinguishing Mechanisms by Alternative Sources 
of Information. The fact that a saturation curve per se 
does not indicate a unique mechanism does not mean 
that no information is obtained. It is clear that the 
square and tetrahedral models described above fit the 
data far better than the linear and concerted models. If 
the deviations in the latter cases are outside experi- 
mental error, these mechanisms as outlined in eq 24 
and 30 can be excluded. 

If several models give curves which fit the data, further 
information will be necessary to obtain a unique mecha- 
nism. Table V gives an indication of the type of data 
which may be helpful in this regard. For example, the 
experimental points in A can be fitted by curves which 
are very similar, derived from the four different models 
presented above. However, the K,K, values which are 
required to give these similar curves are 8.7 X 10-2, 
9.3 X and 6.5 X respectively. The 
respective KBB values are 5.0, 2.8, and 13.0. 
Clearly an independent method of measuring K,K, or KBB 
could distinguish between these alternatives. Although 
no method of measuring precisely these quantities exists 
at the moment, these calculations indicate lines which 
may lead to such distinctions. 

Optical rotatory dispersion spectra, difference spec- 38 1 
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FIGURE 21 : Comparison of the use of the equation for 
the “square” geometry (- ) and the equation 
derived by Monod et uf .  (1965) (--------- ) in fitting the 
data for the oxygen binding equilibrium of hemo- 
globin. The experimental points are taken from the 
data of L. Lyster (quoted in Monod et a[., 1965). 
The curve for the “square” case was adjusted by using 
the parameters (So.5)  and R, and is identical with curve 
D of Figure 20. The curve for the equation of Monod 
et al. (1965) was redrawn from the figure presented by 
them, using the values of the constants shown in that 
curve, i.e., L = 9054, c = 0.014, and KR = 1.0, the 
latter being determined directly from the curve shown 
by them. 

tra, etc., may provide information in this regard. Corre- 
lation of binding constants with observed conforma- 
tional changes, for example, would provide an extra 
source of information. Moreover, the three-dimen- 
sional geometry of the protein as determined by X-ray 
crystallography may be helpful in eliminating alterna- 
tives. For example, in the case of hemoglobin the sub- 
units appear to be arranged in a roughly tetrahedral 
arrangement, but there are apparently few diagonal 
interactions. Thus the square case outlined above would 
appear to be preferable to the tetrahedral model as 
judged by the three-dimensional arrangement of the 
molecule. The finding that monomeric myoglobin 
gives a curve consistent with the Michaelis-Menten 
equation suggests that the interaction parameters KAB 
and KBB are indeed responsible for the changed satura- 
tion curve in hemoglobin (Theorell, 1934; Rossi- 
Fanelli et al., 1964). Finally, the fit of a single model 
to saturation curves obtained under a wide variety of 
conditions might be helpful. For example, the fact 
that the square case gives good agreement with the 
experimental saturation curves is indicative that it may 
be a correct representation of the molecule. Thus, 
saturation curves per se may not distinguish but they 382 

may so limit the alternatives that even moderately ac- 
curate additional measurements may allow a unique 
representation of the data. Perhaps one of the most 
valuable results of these equations is to indicate the 
types of measurements which may be useful. 

3. Qualitative Conclusions from Saturation Curves. 
The difficulty of direct measurement of conformational 
effects makes it desirable to derive qualitative conclu- 
sions from saturation curves, but this procedure has its 
perils. Thus, it is frequently assumed that a Michaelis- 
Menten type curve indicates the absence of cooperative 
effects or of subunit interactions. Actually, as shown 
here, subunit interactions may occur and still give a 
Michaelis-Menten curve. To do so requires certain 
quantitative limitations which may be rare. However, 
the probability of these occurrences is not yet known. 
Hence, the existence of a Michaelis-Menten curve can 
be considered as an indication of the absence of co- 
operative or antagonistic effects but certainly not as 
conclusive evidence in this regard. 

Another interesting relationship is the finding that a 
saturation curve when K.~B >> 1 or KBB << 1 levels out 
at Y = 0.5 over a wide range of ligand concentrations. 
This would mean that four identical subunits with four 
identical sites can give the appearance of two sites as a 
result of subunit interactions. Other assumptions in K 
values could likewise give rise to similar anomalies. 

Finally, it is worth emphasizing that a curve with a 
very steep rise and a classical sigmoid pattern can be 
obtained equally well when KRB = 1 and K.iR < 1 as 
when K.:~B = 1 and KBB > 1. Thus the appearance of 
such a sigmoid curve is not a necessary indication that 
there is a cooperative effect between subunits to sta- 
bilize a conformational change. Rather an unfavorable 
interaction between identical subunits in different con- 
formations might have the same effect. 

4. Nonidentical Subunits. The presence of subunits of 
differing amino acid sequence may influence the con- 
stants of the system, but such an influence is not a 
necessity. If the amino acid differences occur in non- 
essential parts of the molecule no perturbations of 
ligand binding or subunit interactions may occur. There 
are examples of enzymes from different species having 
different amino acid sequences which have apparently 
identical catalytic activities (Smith and Margoliash, 
1964). Thus the difference between the a and f i  chains 
of hemoglobin does not a priori indicate that their 
binding sites are different or that their interaction with 
each other is necessarily different. The presence of 
different types of chains, therefore, allows an added 
parameter which may or may not be important in the 
systems under investigation. 

Since there is strong evidence that primary sequence 
determines tertiary structure it can be presumed that 
subunits of identical amino acid sequence have the 
same tertiary structure, and, therefore, presumably the 
same interactions. 

5. Fitting of Curves to Data. The empirical curve- 
fitting procedure outlined above was designed for 
simplicity and relative accuracy for the class of pro- 
teins which are being intensively investigated at the 
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moment. The fit obtained in the hemoglobin case was 
within experimental error of the O2 binding data. It 
seems wasteful to obtain the very best fit by elaborate 
least-squares methods for a given model when several 
different models are capable of explaining the data. At 
this stage, therefore, further methods of refinement 
did not seem worth developing. However, as the data 
become more accurate and the need to distinguish 
between mechanisms more urgent, the procedures 
outlined here could readily be extended. It should be 
emphasized, however, that possible developments of 
the future might go in an entirely different direction. 
Thus the development of independent methods of 
measuring K, and K, might make it superfluous to 
obtain highly accurate saturation curves in order to 
distinguish between mechanisms. 

In applying these models to other experimental situa- 
tions it is important to caution against blind use of the 
nomograms provided here. For a four-subunit enzyme 
the nomograms may be helpful and a fit of theory and 
experiment may indicate the mechanism or mecha- 
nisms worthy of further consideration. Until all likely 
other alternatives are excluded, however, a fit does not 
establish an individual model. 

In applying such procedures to other systems, e.g., 
those involving more or less than four subunits, the 
procedures used here are readily applied. A model 
similar to those in Figure 2 must be prepared. The de- 
tailed relationships as depicted in Figure 3 must be 
outlined. From these the derivations are relatively 
easy, the coefficients of the terms being closely related 
to the numbers found in Figure 3. Thus, although the 
equations look formidable, they can be derived and 
computed with relative ease by the procedures utilized 
for these tetramer cases. 

Using a family of ligand curves such as those in 
Figures 6-8, it is easy to construct nomograms for R, 
ratios other than those used here. This might be de- 
sirable in certain situations, e .g . ,  when a given protein 
could only be studied between 75 and 25 2 saturation. 

6. Catalyzed Transjortnation vs. Tautornerism. In a 
ligand-induced conformation change two mechanisms 
of achieving the end result may be visualized. One is a 
catalyzed transformation in which the substrate ac- 
celerates the rate of the conformation change. The other 
is tautomerism in which the protein by itself undergoes 
the conformation change and the new form is then sub- 
sequently complexed by the ligand. Both alternatives 
can be stated in the form of eq 46 in which the relative 
velocities of pathway 3 vs. pathway 1 plus 2 will de- 
termine the mechanism of the conformation change. 

1 
A J ' B  

In the derivations of this paper no attempt to dis- 
tinguish between these alternatives was made. A model 
containing BS forms but not B forms tacitly assumes that 

no significant quantities of B exist in the absence of S. 
Whether this occurs because of kinetics or equilibrium 
is a significant problem, but it does not need to be re- 
solved for the present work and, therefore, it is not 
examined in this paper. 

7. Relation of' Models to the Actual Confonmtionaf 
Changes in the Protein. The fact that a good fit to hemo- 
globin data was obtained with rather simple models does 
not mean that these simple models are necessarily cor- 
rect. It does mean, however, that the saturation curves 
per se do not demand at this stage of study more com- 
plex models. For example, the square model shown 
above fits the hemoglobin data very well. This model 
involved assumptions that: (a) only two conformations, 
A and B, exist; (b) that there are strong interactions 
between adjacent B conformations; and (c) that the 
interactions between the adjacent A conformations 
is the same as between adjacent A-B conformations. 
From what we know of protein chemistry these as- 
sumptions do not seem likely to be rigorously true in all 
cases. It is difficult to believe that a change which makes 
B very strongly interact with another B will leave un- 
changed its interaction with A. Moreover, a partial 
change in the A conformation might be caused by a 
change in an adjacent B structure, thus giving a con- 
formation intermediate between A and B. These rela- 
tions could be expressed mathematically, and one such 
intermediate case was calculated in this article. It was 
obviously undesirable, however, to calculate all the 
intermediate situations when the more extreme models 
already fit the data. Moreover, the added complexities 
may be minor perturbations on a basic model which 
may be close to that of one of the simple cases outlined 
here. 

Only future experiments can distinguish between the 
alternatives, but the mathematical identification of 
individual constants and detailed fitting of saturation 
curves appear to provide one avenue for obtaining 
such distinctions. 

Appendix A 

Relationship of the HdfXituration Point (So.5) to the 
Equifibriutn Constants. (1) DEPENDENCE ON ICeB. Only 
KAB = 1 will be considered in this section, since (So.5) is 
independent of the value of KAB (cf. section 2 below 
and Figure 7 ) .  

Equation 44 can be rewritten as 

The validity of this relationship will be verified in this 
section. By raising both sides of eq AI to the nth power 
(n = 4 in this case) and comparing with eq 12, 17, and 
23, it can be seen that eq AI is equivalent to the condi- 
tion 

(A2) 383 
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for the tetrahedral, square, and linear cases, respec- 
tively. For example, if eq A1 holds, then for the square 
case 

and similarly for the other cases. Using eq 29 and 45 in 
the same manner, it can be seen that eq A2 is also 
obeyed for the concerted transition. 

By using eq 9 and 1 1 ,  or 14 and 16, respectively, it 
can also be seen that eq A1 implies that 

for the square and the tetrahedral cases. 
For example, for the square case, 

Equations A2 and A4 imply that, when eq A1 is satis- 
fied, then the distribution of E in the various forms 
Est (i = 0-4) is symmetrical with respect to E&. There- 
fore, the amount of substrate bound can be written as 

while the amount of enzyme is given by 

Substituting eq A6 and A7 into eq 5 gives N, = 2, 
verifying that eq A1 represents the condition for the 
mid-point for the square and the tetrahedral curves. 

The relationship A4 does not hold for the linear case, 
due to the asymmetry of the saturation curve (cf. Ap- 
pendix B). Using eq 20 and 22, it can be seen that 

instead of 

which would be required if eq A1 and A4 were to hold. 
Therefore, the condition given in the text for the 

mid-point of the linear curve, Le., eq 44 with 19 = 0.75, is 
only an approximation. 

(2) DEPENDENCE ON K.*B. As shown in Figures 7 and 8 384 

for the square case, the mid-points of all curves with 
constant values of K.K, and of K B B  coincide, irrespec- 
tive of the choice of KAB. This relationship holds for 
the tetrahedral case as well. 

As seen from eq 9 and 1 1 ,  or 14 and 16, respectively, 
the number of A-B interactions is the same in the forms 
ES and ES3 in both cases. Therefore, if K.4B # 1 ,  both 
(ESJ and (E&) contain the same factor, KAR3 (or K.m*) 
and eq B4 still holds. In other words, the symmetry of 
the distribution of E (eq A6 and A7) is not altered by 
changing K A B .  

Appendix B 

Syriirnetry of Saturation Curves. Symmetry of the 
saturation curve in the N, vs. log (S) representation 
requires that R, = R,' = 1, with a similar relationship 
holding for all similar choices of two points equidistant 
from N, = 2.0. From eq 7 this condition can be ex- 
pressed as 

where X is substituted for the ratio shown in order to 
simplify the expressions to be derived. With this sub- 
stitution, 

and 

From eq 44 it can be seen that 

Using this relationship with eq B2 and B3, 

and 

In the following, only saturation curves for which KAr3 
= 1 will be discussed, in order to simplify the equations. 
However, the present proof can easily be extended to 
KAB # 1 using the relationship shown in eq 41. 

For the square case, for which 8 = 1, substitution of 
(SI) = (SO.,,,) and of (SII) =   SO.^-^) in eq 18 gives, 
respectively 
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and 

Multiplying numerator and denominator on the right-hand side of eq B3 by X 4  and adding it to eq B7 gives 

By definition, 

Because the equality of eq B9 and B10 hold independently of the choice of either x or KHH, it can be seen that all 
curves for the square case are symmetrical. By a similar argument, it can be shown that all tetrahedral curves must 
be symmetrical, too. 

In the linear case, for which B = 0.75, the same procedure gives, in place of eq B7-B9, the following expressions 
based on eq 24. 

and 

Adding eq B11 and B12, it can be seen that the ex- 
pressions containing KBB do not vanish from the sum 
as they do in eq B9, except in a few special cases, i.e., 
R ,  is a function of KBB, and that, therefore, the linear 
case does not result in symmetrical saturation curves. 
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