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The first order electric field correlation function of laser light scattered by polydisperse solutions of
macromolecules can be written as a sum or distribution of exponentials, with decay rates proportional to
the diffusion coefficients of the solute molecules. It is shown that the logarithm of this correlation function
is formally equivalent to a cumulant generating function. A method is described by which the distribution
function of the decay rates (and thus the extent of polydispersity) can be characterized, in a light scattering
experiment, by calculation of the moments or cumulants. The systematic and random statistical errors in

the calculated cumulants are discussed.

I. INTRODUCTION

In recent years, the spectral analysis of scattered
laser light has proven to be a useful technique for the
study of the dynamics of macromolecules in solution.!
In addition to the conventional total scattered intensity,
one can now measure the first-order electric field correla-
tion function,

g (| b=t ) =(*(t)e(8) )/ (| € *); (D

the angular brackets indicating an ensemble or infinite
time average.

For simplicity, consider the light scattered by dilute
solutions of optically isotropic molecules, which are
small compared to a wavelength of light, or spherically
symmetric, or both.

For a monodisperse solution,?

| 8% (r) |= exp(—T7),

I'=DK?,

(2)

where

with D, the translational diffusion coefficient of the
molecules, and K, the magnitude of the scattering
vector (the momentum transfer in units of #). For
polydisperse solutions, Eq. (2) must be generalized to
a sum or distribution of exponentials:

60() = [~ G(r) exp(~Tn)ar,
0
with

/ G(T)dr=1. (3)

0

The distribution function of the decay rates, G(T),
can be a broad continuous distribution, a series of dis-
crete delta functions, or some combination of the two.
G(T')dT is the fraction of the total intensity scattered,
on average, by molecules for which DK?*=T, within
dT'. Depending upon the aim of a given experiment,
polydispersity is something to be studied in itself,
merely taken into account, or strictly guarded against.
The object of data analysis, in any event, is to charac-

terize G(T'). There are at least three approaches to the
problem. First, one can calculate G(T') directly, in-
verting the Laplace integral equation [Eq. (3)], with
Fourier transforms.® This technique, however, requires
data of high precision over an extraordinary range, and
has not been widely employed. Alternately, one may
presuppose a specific form for G(T'), and calculate the
parameters which give the best fit to the data. Taking
this distribution specific approach, several authors**
have analyzed the particular case of a Schulz distribu-
tion of molecular weights. This approach makes good
sense when there is a reasonable basis for supposing
that a particular distribution has some correspondence
to the sample under study.

We now propose a system of analysis which is more
general. It is based on the formalism of the statistical
cumulant generating function. With a simple fit of the
experimental estimates of In | g (7) | to a polynomial,
we characterize G(T') with a calculation of its moments
or cumulants. While this paper relates to the specific
technique of photocount autocorrelation, the cumulants
data analysis introduced here can be applied equally
well to any experiment which yields a sum or distribu-
tion of exponentials. A preliminary version of this ap-
proach has appeared elsewhere.’

II. MOMENTS AND CUMULANTS

The correlation function of the light scattered by
polydisperse solutions lends itself naturally to an
analysis in terms of moments or cumulants. We ob-
serve, first of all, the exact formal correspondence be-
tween the form of the correlation function just pro-
posed [Eq. (3)] and the moment generating func-
tion 310

M(—7; T)={exp(—=T7) Jn
= [g¥() |. (4)

{exp(—T'r) ) here signifies an average over I', weighted
by the distribution function G(T'). The moments of
the distribution are related to the derivatives of
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IM(—7; T) with respect to (—7):
g (T) = (T )
=[d"/d(—7)"IM(~7;T) |-ro0.  (5)

Similarly, one can define the cumulant generating func-
tion3® as the natural logarithm of the moment gen-
erating function;

K(—m; )= InM(—7; T)
=In|g®(x) | (6)
The mth cumulant of T', K.(T'), is the coefficient of

(—7)™/m! in the MacLaurin expansion of X(—7; I'),
which thus takes the form of a power series in 7. That is

Ka(D)=[a/d(~)"JR(=T) s (D)
and
ICHIVED > MRS

For a single exponential correlation function, X(—7; T')
is of course, simply linear in 7. Deviations from “‘ex-
ponentiality” of | g®(+) | thus appear in Eq. (8) as
terms of higher order in 7.

The cumulants can be written explicitly in terms of
the moments,?

En(T)= 3 (=) (1= 1)1 (b ar, +++, am)

I=1 {a}

XCua(T) Jre + - [t (T) Jom, - (9)

with

c(l;ay, +++, am) =ml/T] a;1( 1),
=1

and the sum over {a} including all sets of nonnegative
integers a1, +++, @m for which

m

> jai=m
]
and
S =1, (10)
=1

It is clear from Egs. (9) and (10), that the mth cumu-
lant exists if, and only if, all moments of order <m
exist. All moments of T are necessarily finite, however,
since physically, the diffusion coefficient of any mole-
cule is finite.

The cumulants, except the first, are invariant under
charge of origin, i.e., for any constant ¢, as a direct
consequence of Egs. (4), (6), and (7),

Km>1(I') = Km>1(r_5) )
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but

K](P)=K1(I‘—C)+E. (11)
As a result, choosing ¢= (T )u, the cumulants can be
written directly from Eq. (9), in their simplest and
most useful form, as combinations of moments about
the mean,

Ki= (D)= f ® rG(r)dr,

0
K2=M2,
K3= Ma,

K4=—:M4—3(M2)2, (12)

where
M,,.E ((I“‘ (P )) Avm)Av-

The first cumulant, by Eqs. (2) and (12), is directly
proportional to some average diffusion coefficient, (D).
If, as is often the case,! the intensity of light scattered
by macromolecular species 7 is proportional to the
molecular weight m;, times the weight concentration
Ciy 1.€.,

G(F)=Z cimia(I‘—I‘i)/Z cim;, (13)

then (D) is the so-called z average diffusion co-
efficient,?

(Dow=(T)w/K?
=D,’

D=3 com:Di/Y com. (14)

This is a result of some significance; since it is the 2
average D which, when combined in the Svedberg
equation in the usual way with the routinely measured
weight average sedimentation coefficient,!? gives a well
defined result!?: the weight average molecular weight.
The second cumulant, K», suitably normalized by
(K1)?, is a good measure of the relative width of the
distribution. Similarly, K3 and K, are measures of the
skewness or asymmetry, and the kurtosis, the peaked-
ness, or flatness of the distribution. It is interesting to
note, that for a Gaussian distribution of decay rates,
all cumulants of order higher than two are identically
zero.

ITII. SPECTRAL EQUIVALENT

For completeness, now, we present the spectral equiv-
alent of this approach. Si(w) and Si(w), below, are
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F16. 1. Normalized standard deviations of the first three cumulants (m=1-3), calculated in different order polynomial fits (M=
1-4), with 20 equally spaced data points, in the extreme, low counting rate, Poisson noise limit, with (B)=109, as functions of

{K1® )7 ax. These results are applicable for any | g (z)|.

the heterodyne and homodyne spectra, respectively,!

5= 2 [ 1606) | exp(—iur)ar

Re[ (T )w— i)™+ ]
(D)ot

(T )~

= i:— > (="M
_ A1<P )Av
= (Tt o) ( it
_ (D )nt—6{T 2w+t
<F >Av( (P >Av2+‘»°2) 8

Moteot), (19

Az [
Si()= 3 [ 1 g0(r) It exp(—iam)ar

w© —1Ymgp!
_ A Dy M,
T mad) {mybmamm) 11}
RL@(M—i)™
L@+

The normalization factors, A; and As, are just the
integrated spectral intensities. The higher-order terms
are again functions of the moments of I' about its mean,
but their complicated dependence on w makes one ap-
preciate the simple power series form applicable in the
time correlation analysis. Similar expressions have
been derived previously® for the limit «>>T'.

IV. CALCULATING CUMULANTS

In this section, we detail a procedure for calculating
the cumulants starting with the correlation data of a

digital homodyne experiment. As background for the
signal to noise calculations of the following section, we
include somewhat more of the details than would other-
wise be necessary.

A full, or unclipped, correlator partitions time into
a series of clock intervals and constructs the sums of
products,

c(r)= 3 n(t)n(tt), (a7

=1
where n(#;) is the number of photocounts in the clock
interval centered about #. We define a normalized
“signal’”?

s(r)=[c(r)/B]—1, (18)

where B, the background or accidental correlation
level, is calculated from the single channel counting
rates,

B=N"! [i‘ln(h)]z. (19)

If the clock interval is short compared to the field cor-
relation time, then!

(s(r))=81g"(7) %

where 8, the constant of proportionality, incorporates
the effects of incomplete spatial coherence of the field
at the photodetector.” If we now define

k(7)=11Ins(7),

(20)

(21)
and if

([os(r) )= (Ls(r) — (s(7) YPIKLs(7) 1%
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F16. 2. Normalized cumulant standard deviations relative to that of the single exponential fit,

{(BKn )2 )12/ (K1) ym

R =
as functions of (Ki }rmax.
then, by Egs. (21), (20), (6), and (8),
(k(7))=%In(s(r))
=artIn | £0() |
=c+X(—r;T)
—cot z Kn (_’)m, (22)
m!

where ¢p is a constant, independent of G(T).

The majority of correlators today perform single-
clipped correlation,”* in which %(#;) in the delayed
channel is converted into a binary clipped count, n,(%:),
by the following formula:

ne(8:)=0  if n(t:)<q

=1 if n(ti)>q.

The above relationship, between the experimental data
and the cumulant generating function [Eq. (22)] holds
true for the equivalent clipped signal, defined with

(23)

N
G(T)Ezlnq(ti)n(ti'i'f),

B=N- [ﬁl nqa,-)J[é n)l (29

We calculate the cumulants, for the data of a particular
experiment, with a weighted least-squares fit of k(7)

(KW /(K@)

[see Eq. (22)] to the Mth-order polynomial,

(M)+EK<M)(m") ,

m=l
with superscripts designating the order of the fit. In the
usual fashion,”V each data point, k(r;), is weighted by
estimates of ([8k(r;) J2)L

In this notation, then, K, is the experimental es-
timate of K. There are two sources of error in this
estimate. First, there is the obvious effect of the statis-
tical deviations from the average in the measured values
of k(r;). The statistical errors limit the value of M
(there are M 41 parameters in the fit) that one can
profitably employ.

Also, the forced fitting to a finite polynomial of a
function that is, in general, an infinite series results in
systematic errors. Therefore, K,,™ is a biased estimate,
in that even the average, (K, ), differs from K,,. We
evaluate these two effects in the following section.

V. PRECISION AND ACCURACY

A. Random Error

The least squares problem is analytically solvable for
a polynomial fit."” Each K,®, in our case, is a linear
combination of the data points, 2(r;). The variance,
{(8K,™)?) is therefore a linear combination of terms
of the form [see Eq. (21)]

(8 (7:) 8k (5) Yo (35 (7:) 85 (75) )/ s (7:) s () ), (25)
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Tasre I. The normalized covariance, ($K,(MsK, M )/[((8KM)?)((6K,)2)T2
calculated with 20 equally spaced data points, with (K;® )7p.,=2.0.

Ko K® K,® K® K,® KO
K,® 1.00 0.37 —4.3X1077 0.17 —4.5X1077 —4.6X1077
K,® 0.37 1.00 0.93 0.46 0.21 —4.6X1077
K,® —4.3X1077 0.93 1.00 0.43 0.22 —1.7X10"7
K,® 0.17 0.46 0.43 1.00 0.96 0.89
K,® —4.5X1077 0.21 0.22 0.96 1.00 0.97
K;® —4.6X1077 —4.6X1077 —1.7X10-7 0.89 0.97 1.00
where between the errors of different cumulants calculated

Sk(r)=k(r)— (k(r)),
ds(r)=s(v)—(s(7) ).

For simplicity, we consider first the extreme low count-
ing rate, Poisson noise limit. In this case, the error is
uncorrelated between data points, and the unclipped
and clipped at zero correlation functions are virtually
identical, with®

([ok(r;) )1+ | g (;) [F/4(B) | g¥(7) [+ (26)

(B), again, is the average background correlation level
[see Egs. (19) and (24)]. To keep the calculation of
((8K.®)?) as general as possible, applicable for any
distribution of decay rates, we approximate | g®(r;) |
in the expression for the variance of k(7;) [Eq. (26)]
with the best fit single exponential exp(— (Ki®)r;).
With this approximation, ((8K»®?)2)¥2/(K;® )" can
be calculated as a function of (Ki®) 7max without
specifying a particular correlation function. (rmax is
just the largest delay time.) Figure 1 shows the results
of such calculations, with 20 equally spaced data points,
for the first three cumulants, with (B) set to 10° counts.
For different experimental run times, the statistical
errors scale as (B)"V%.. We really want to know the
magnitude of ((8K.%?)?)4? relative to (K1)™. This can
be calculated from {((8K,*)2)V2/(K,)y for a par-
ticular distribution of decay rates, if one only knows
(K1®)/K; as a function of (K1V) Trmax. An example of
this procedure will be presented below.

For single exponential correlation functions, other
authors’®2 have calculated the equivalent of our
{((BK,W)2)12/ (K, ) for a variety of different condi-
tions. We can take advantage of their results by ob-
serving that while ((8K.®D)HU2/(K,®y" changes
markedly as a function of such things as counting rate
and number of data points, the ratio

((BEn™0)2 ) (R
(R )T/ (K

remains essentially unchanged. Figure 2 shows cal-
culated values of R,??, for the first three cumulants,
again as functions of the total range of delay times.
To calculate the variance of a function of two or more
cumulants, one must take into account the correlation

Rm(M)E

(27)

with the same data. Table I presents selected values
of the normalized covariance,

(B8, M)/ [((BKn0) ) (8K, ™) T,

calculated with (K1® )rm.x=2.0. Note that the statisti-
cal errors of the cumulants calculated within the same
polynomial fit are nearly 1009, correlated. This
effect decreases the variance of such functions as
K, /(K,®)2 but necessarily increases the variance
of others.

B. Systematic Error

As indicated above, systematic error is introduced
to K."D by terms in the power series expansion of
(e(r)) [Eq. (22)] beyond the (M41)th term. The
extent to which (K,®) differs from K, can be de-
termined only for specific correlation functions. We
choose a function next in simplicity to a single ex-
ponential, a sum of two exponentials with diffusion
coefficients, and weight factors differing by factors of
2,ie,

| g0 (r) | =3exp(—1.5K1r)+2 exp(—0.75Ky7) ],
G(I)=4[6(I'—1.5K,)+26(I'—0.75K,)].  (28)

This distribution could correspond, for example, to
an equilibrium mixture of monomers and tetramers or
octamers. Noting that

K>/ (K1)?=0.125,
K/ (K1)?=0.03125,

K/ (K1)=—0.0234, (29)

we examine the systematic errors of the first three
cumulants in Fig. 3. We see that in just those cases
(short delay times, high-order fits), where the random
errors are largest (see Fig. 1), the systematic errors are
smallest. In all cases, one must try to balance these
two effects to minimize the combined error.

K@ is the decay rate obtained with a force fit of the
data to a single exponential. It has no fundamental
significance in this case, since it varies considerably
as a function of delay time range, and is typically 6%,
or 7%, lower than the true average decay rate. With
the addition of just the quadratic term, however, this
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F16. 3. The first three (m=1-3) cumulants for

| g™ ()| = {3[exp(—1.5K17) +2 exp(—0.75K17) 1},
calculated with 20 equally spaced data points, in different order polynomial fits (M =1-4) as functions of Kirmasx.

systematic error is cut to about 19}. The measured
value of K»@, the coefficient of this first nonexponential
correction term, provides a useful quantitative test of
monodispersity. It must be zero, within experimental
error, before we can safely say that | gV (7) | is a single
exponential.

The dashed curve in Fig. 3 is (K;?)/K; plotted as
a function of (K1™® )rpax. This is precisely what we need
to adapt the general results of Figs. 1 and 2 to the
specific correlation function of Eq. (28). For

(K1 )rimax=2.0,
for example, (K;V)/K1=0.931, so that
((BKn )22/ (Ky)m™

A similar curve can be constructed for other correlation
functions.

C. An Example

We now examine the combined effects of systematic
and random errors for a specific example: the two ex-
ponential correlation functions of Eq. (28), with
{K1V )rmax=2.0. Figure 4 shows computer-generated
data complete with statistical errors consistent with the
level of precision assured for Fig. 1 (low counting rate
limit, with (B)=10%). We see here the relative insensi-
tivity of light scattering data to solution polydispersity.
Systematic deviations from the best straight line fit,
the solid line, but can be seen; but these deviations are

= (0.931)"((3K M) 2 )12/ (K,®)m,  (30) T T T T T T T T T
o -
TasLe II. Average cumulants and standard deviations for <°\
| ¢ (r) | =4[exp(—1.5Ki7) +2 exp(—0.75K7) ], calculated with o
20 equally spaced data points, in the extreme, low counting rate, -0.5r 0\0\0 7
Poisson noise limit, with (B)=108 and (K® Jryay=2.0. o,
\o\
= -lof 0 .
M 5 \°\°\
1 2 3 4 °~
-1.5+ e 4
\O\o
K /K, 0.931  0.991  1.000  1.000 \
+0.0016 --0.0042 +0.0089 40.018 -2.0—
K,/ (K,)? 0.095 0.127 0.127
+0.0062 +£0.027 +0.084 I | { ! | ] | | !
0O 02 04 06 08 10 12 4 16 18 20
K0/ (Ky)? 0.030  0.04t Kty ¢
+0.032  +0.210
Fic. 4. Sample computer-generated data, with statistical
K™/ (K;)4 0.0016  errors consistent with extreme, low counting rate, Poisson noise
+40.210 limit with (B)=108. (k(r) y=Ini[exp(—1.5Ki7)+

2 exp(—0.75K;7) ]. Solid line is best straight line fit.
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F16. 5. Numerical derivative of data of Fig. 4. Solid curve is
derivative of (k(r) ).

small. As a useful visual display, Fig. 5 shows a cal-
culated derivative of these data.”? For the derivatives
with respect to = we take the straight-line, least squares
slopes of all sets of four consecutive points. The solid
line, here, is the derivative of data without errors. The
intercept of such a plot, the initial decay rate, is just
equal to Kj, the average decay rate. The general down-
ward slope and upward curvature of the derivative of
Fig. 5 are evidence of K, and Ks, respectively. Guided
by Eq. (7), we originally employed this numerical dif-
ferentiation in our calculation of the cumulants.” We
have subsequently found the direct polynomial fitting
to be superior.

Table IT summarizes, for such data, the average cal-
culated cumulants, and the statistical standard de-
viations about these averages. The average values are
taken from Fig. 3 with

Kl"'mnx= <K1(1) >Tmax/0-931
~2.15,

and should be compared with the exact cumulants of
Eq. (29). The standard deviations are taken from
Fig. 1, and adjusted with the aid of Eq. (30). In a
third-order fit, for example, we can measure K; to
better than 19, K, to about 209, but can determine
little more than the sign of K;. The data are not precise
enough to warrant a fourth-order fit. These results in-
dicate what one can and cannot expect to obtain with
this method, and show again the relative insensitivity
to polydispersity of light scattering data.

It is left to the reader to derive from Fig. 1, or a com-
bination of Fig. 2 and Refs. 18-20, individual standards
of “minimum detectable polydispersity.”” Ultimately,

DENNIS E. KOPPEL

however, one is limited, not by the precision of the
data, but by the introduction of systematic errors by
such things as laser instability, dust in the sample, or
the detection of unshifted laser reflections.”

VI. CONCLUSIONS

The analysis of field correlation functions in terms
of the cumulants of the decay rate is attractive in
theory and applicable in practice with data of reason-
able statistical accuracy. This approach provides sig-
nificant quantitative information on the polydispersity
of macromolecular solutions, and is of sufficient sim-
plicity and generality to be incorporated routinely in all
data analysis.
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