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Behind the folding funnel  
diagram
Martin Karplus

This Commentary clarifies the meaning of the funnel diagram, which has been widely cited in papers on 
protein folding. To aid in the analysis of the funnel diagram, this Commentary reviews historical approaches 
to understanding the mechanism of protein folding. The primary role of free energy in protein folding 
is discussed, and it is pointed out that the decrease in the configurational entropy as the native state is 
approached hinders folding, rather than guiding it. Diagrams are introduced that provide a less ambiguous 
representation of the factors governing the protein folding reaction than the funnel diagram. 

Understanding the mechanism 
by which proteins fold to their 
native state remains a problem of 

fundamental interest in biology, in spite of 
the fact that it has been studied for many 
years1. Moreover, now that misfolding has 
been shown to be the source of a range of 
diseases, a knowledge of the factors that 
determine whether a polypeptide chain 
will fold to its native state or aggregate has 
become all the more important.

The folding funnel diagram (see Fig. 1), 
introduced by Wolynes, Onuchic and 
Thirumalai2, is intended to provide 
a pictorial representation of how the 
Levinthal paradox3, which had dominated 
discussion of protein folding for many 
years, is resolved. Since the original 
publication, funnel diagrams have become 
a fixture in papers on protein folding, 
and they are now being introduced in 
discussions of other problems, such as 
ligand binding4. Unfortunately, the funnel 
diagram has created a misconception in 
many readers.

The concept introduced by Levinthal is 
that the appropriate point of reference for 
protein folding is a random search problem. 
Taken literally, as it has been by many 
people, this means that all conformations 
of the polypeptide chain (except the native 
state) are equally probable, so that the native 
state can be found only by an unbiased 
random search. For such a search, the 
time to find the native state is given by the 
number of configurations of the polypeptide 
chain (on the order of 1070 for a 100-residue 
protein) multiplied by the time required to 
find one configuration (say, 10−11 seconds). 
This leads to an enormously long folding 
time (say, 1059 seconds or about 1052 years). 
Given that small proteins (100 residues or 

fewer) generally fold in times on the order 
of milliseconds to seconds (except in cases 
with special factors that slow the folding, 
such as proline isomerization), there was 
indeed a paradox. The ultimate statement 
of the paradox was given in the language 
of computational complexity5. Many 
phenomenological models were proposed 
to show how the conformational space that 
has to be searched is restricted to reduce 
the folding time to the experimental range. 
Examples include the nucleation-growth or 
nucleation-condensation mechanism6,7, the 
diffusion-collision model8 and the jigsaw-
puzzle model9.

In the late 1980s, the focus of approaches 
to the protein folding problem shifted 
from phenomenological models to a 
consideration of the general characteristics 
of the energy surface of a polypeptide chain. 
The new focus is eminently reasonable, as 
the energy surface is one of the fundamental 
determinants of any reaction1, whether a 
small-molecule reaction or protein folding. 
The change made explicit a concept that is 
implicit in the phenomenological models—
for any of the models to work, there must 
be energetic factors that bias the folding 
process. For example, only if a nucleus is 
stable, relative to the random coil structures, 
can it play a role in folding. In an insightful 
paper, Zwanzig et al.10 used a simplified 
model to demonstrate that if there is a bias 
in the potential energy such that it decreases 
relatively smoothly toward the native state, 
only a limited number of configurations 
would be visited in the folding reaction, 
and the configurational search (Levinthal) 
problem would be solved.

The required energy bias is embodied 
in the two-dimensional funnel diagram, 
the most widely used of which is similar 

to that shown in Figure 1. It is a schematic 
representation of how the effective 
potential energy, implicitly averaged 
over solvent interactions (in the vertical 
direction), and the configurational entropy 
(in the horizontal direction) of a protein 
decrease as the native state is approached; 
picturesque three-dimensional funnels are 
also being used11. Both the two- and three-
dimensional diagrams have a funnel-like 
shape because the number of accessible 
configurations, which determine the 
configurational entropy, decreases as the 
energy decreases. Such funnel diagrams 
are very appealing images from which 
many readers have concluded that folding 
a protein is like “funneling wine into a 
bottle.” A typical statement of this type 
appears in a study of the folding of PDZ 
domains12; in the introduction, it is stated 
that “Free energy landscapes of many 
proteins appear to resemble the shape of 
a funnel that guides the folding process 
toward the native state.” Although Wolynes 
et al.2 were aware that the occurrence of 
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Figure 1 | A schematic folding funnel diagram. 
The effective energy is plotted vertically and the 
configurational entropy horizontally. Adapted from 
reference 2.
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such “guiding” is a misconception, as can 
be seen from their original paper, they 
have not emphasized this point, and the 
misconception concerning the funnel 
diagram has continued to proliferate.

The essence of the misconception is 
that the decrease in configuration entropy, 
which gives the diagram its funnel-like 
shape, aids the polypeptide chain in finding 
the native state. In fact, exactly the opposite 
is true; that is, the decrease in the number 
of available configurations, as the native 
state is approached, actually tends to slow 
folding. The difficulty of finding these 
configurations is essentially the origin of 
the Levinthal paradox. To understand the 
folding process it must be realized that the 
major determinant of the folding rate is the 
free-energy surface (often referred to as a 
“landscape”) of the polypeptide chain1,2,7,13, 
rather than the energy shown in the funnel 
diagram. The free energy is the sum of the 
potential energy, which decreases as the 
native state is approached and therefore 
favors folding, and the unfavorable 
contribution of the decrease in the 
configuration entropy. The delicate balance 
between the two generally leads to a free-
energy barrier that results in the two-state 
folding behavior observed for most small 
proteins (see ref. 7 and references therein).

The developing understanding of protein 
folding has been aided by experiments 
that provide structural and kinetic 
information that contribute to dissecting 

the mechanism, such as those making use 
of NMR1 and protein engineering7. Also, 
it has become possible to rapidly trigger 
folding and unfolding so that measurements 
can be extended from milliseconds down 

to microseconds and more recently to 
nanoseconds14. An important result of 
such studies is the finding that the folding 
reaction of many small proteins follows an 
exponential time course. This is interpreted 
to mean, as in chemical reactions1, that 
there are only two significantly populated 
states, the denatured state and the native 
state, and that there is a barrier separating 
the two that is larger than a few kilocalories. 
However, it has so far not been possible 
to determine experimentally the detailed 
folding trajectories even for a simple 
protein—that is, a complete description of 
the conformations that are sampled in going 
from the multiconfiguration denatured state 
to a well-defined native state. Consequently, 
a range of theoretical methods continues 
to be used to supplement the experimental 
data. Models that go beyond the 
phenomenological approaches mentioned 
above by focusing on the structural and 
thermodynamic parameters include lattice 
models1,13, coarse-grained models15 and 
atomistic simulations with implicit (see, 
for example, ref. 16) and explicit (see, 
for example, ref. 17) representations of 
the solvent. Also, unfolding simulations 
in explicit solvent, combined with 
experimental data, have been used to 
propose folding pathways for small proteins 
(see, for example, ref. 7).

The first concrete demonstration of 
how the Levinthal paradox can be resolved 
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Figure 2 | Folding of a lattice polymer. (a–d)The effective energy (a,b) and free energy (c,d) calculated as 
a function of the fraction of native contacts for the 27-mer lattice polymer: a and c at a low temperature; 
and b and d at a high temperature. Adapted with permission from reference 22.
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Figure 3 | Folding of a designed α-helical peptide. (a–d) The effective energy (a,b) and free energy (c,d) 
calculated as a function of the fraction of native hydrogen bonds for a designed α-helical peptide: a and 
c at a low temperature (270 K); b and d at a high temperature (390 K). Adapted with permission from 
reference 21; some data points for low and high Q values at the low and high temperature, respectively, are 
not shown because of poor statistics.
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was provided by Monte Carlo simulations 
of a 27-residue polypeptide represented 
by a chain of beads on a cubic lattice with 
interactions between neighboring beads 
favoring the native state13 (see also ref. 
18). The simulations demonstrated that 
folding occurred even when the number 
of denatured configurations is large 
enough (1018) to make it impossible for a 
random search to find the native state in 
the simulation time. In accordance with 
the conceptual framework of the Zwanzig 
et al. model10, it was shown that only 
about 107 steps were required to fold the 
sequences, whereas there are on the order of 
1016 configurations in the denatured state. 
Analysis of molecular dynamics simulations 
of the folding of a 20-residue peptide that 
forms a stable three-stranded double-
hairpin β-sheet represented by an all-atom 
potential energy function showed results in 
accord with those obtained from the lattice 
simulations; during the average folding 
time, the peptide folds to the native state 
and solves the Levinthal paradox by having 
to visit only an infinitesimal fraction of the 
denatured configurations19.

One-dimensional representations 
showing the free energy as a function of the 
distance from the native state provide more 
information about the folding mechanism 
and are less subject to misinterpretations 
than the funnel picture1,7,13,20. Figures 2 
and 3 illustrate this point; they are 
based on the 27-mer lattice Monte Carlo 
simulation described above13. Figure 2a,c 
shows the lattice model results for the 
effective energy and free energy at a low 
temperature and Figure 2b,d at a high 
temperature, as a function of the number 
of native contacts, Q, which is a satisfactory 
progress variable for the system. At the 
lower temperature (Fig. 2a), the effective 
energy surface resulting from the sampled 
configurations is ‘rugged’ and does not 
have a monotonic decrease as the 27-mer 
structure approaches the native state. The 
free energy values (Fig. 2c) show that the 
added configurational entropy introduces 
a barrier; it is in the region of Q = 0.8. 
For the higher temperature (Fig. 2b), in 
contrast, the effective energy of the sampled 
configuration decreases smoothly as the 
native state is approached, whereas the free 
energy (Fig. 2d) has a significant barrier. 
The latter is responsible for the exponential 
(two-state) folding kinetics.

Although there are no corresponding 
all-atom simulations or experimental results 
showing the free energy and energy for the 
folding of a protein, all-atom peptide studies 
in implicit solvent over the appropriate 
temperature range have been reported for a 
synthetic α-helix and are shown in Figure 3 

(for details, see Ferrara et al.21). As with the 
lattice model, the Figure presents both low- 
and high-temperature results for the effective 
energy and free energy as a function of the 
progress coordinate Q, here defined in terms 
of the fraction of the number of hydrogen 
bonds in the folded state. The effective energy 
plots (Fig. 3a,b) are similar to those in 
Figure 2a,b, except that the low-temperature 
result is somewhat less rugged than for 
the lattice model; the higher-temperature 
effective energy decreases smoothly to the 
native state as in Figure 2b. As to the free 
energy (Fig. 3c,d), at low temperature there is 
a stable minimum at Q = 0.8, whereas at high 
temperature the helical state is not stable; a 
barrier is not clearly visible, though it is likely 
to occur very early when the first helical 
turn is formed. In corresponding studies 
of a somewhat more complex peptide, the 
three-stranded β-sheet mentioned above19, 
the energy and free-energy folding diagrams 
are more complex. What happens in actual 
proteins (for example, is Fig. 1 valid for any 
protein?) is not known.

The important role of the enthalpy and 
the entropy in the protein folding reaction is 
confirmed by the fact that there are striking 
deviations from the Arrhenius temperature 
dependence of the folding rate in lattice13,22 
and all-atom models21 (see Fig. 4a,b). The 
rate as a function of temperature increases 
at low temperatures, in accord with the 
Arrhenius formula. At higher temperatures, 
however, there is a turnover in the rate 
constant that decreases as the temperature 
is increased22; corresponding results 
have been observed experimentally7 (see 
Fig. 18.2 in ref. 7). A possible explanation 
of this behavior is evident from Figure 2. 
At low temperature (Fig. 2a), the folding 
rate is dominated by the ruggedness of the 
potential surface that leads to an apparent 
activation energy. As the temperature 
increases, the apparent activation energy 
becomes negative (Fig. 2b), whereas the 
activation free energy remains positive 
and is dominated by the increasing 
(unfavorable) entropic contribution 
because of the larger number of accessible 
configurations that must be searched to find 
the native one. Thus, from the physicist’s 
viewpoint, proteins are ‘hard matter’ at low 
temperature (enthalpy dominated), whereas 
they are ‘soft matter’ (entropy dominated) 
at high temperature23. What corresponds 
to a ‘low’ and ‘high’ temperature is likely to 
depend on the specific protein.

The funnel concept has stimulated 
useful studies of protein folding; see, 
for example, reference 24. I hope that 
this Commentary will eliminate the 
misconceptions that the funnel diagram has 
engendered in future discussions of protein 

folding. Diagrams like those shown here in 
Figures 2–4, supplemented by figures based 
on the analysis of molecular dynamics 
simulations of peptides repeatedly folding 
and unfolding at equilibrium (near 
the transition temperature) (see ref. 25 
and references therein) provide a more 
meaningful description of the protein 
folding reaction. The reference shows that 
there are hidden complexities not evident 
from experiment nor present in the folding 
funnel diagram.� ◼

Martin Karplus is in the Department of Chemistry & 
Chemical Biology, Harvard University, Cambridge, 
Massachusetts, USA and in the Laboratoire 
de Chimie Biophysique, Institut de Science et 
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Strasbourg, Strasbourg, France. 
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Figure 4 | Arrhenius plots for folding reaction. 
(a) Calculated rate constant as a function of 
temperature for the lattice polymer in Figure 2; 
adapted with permission from reference 2. 
(b) Calculated rate constant as a function of 
temperature for the designed α-helical peptide 
in Figure 3. Adapted with permission from 
reference 21. (c) Measured refolding rate constant 
for CI2. Adapted with permission from references 7 
and 22.
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correction notice Nature chemical biology

Behind the folding funnel diagram
Martin Karplus

Nat. Chem. Biol. 7, 401–404 (2011); published online 17 June 2011; corrected after print 14 July 2011

In the version of this article initially published, there was an error in the abstract that stated an increase in the configurational entropy 
hinders folding, but it should read that there is a decrease in the configurational entropy that hinders folding. The error has been 
corrected in the HTML and PDF versions of the article.

corrigendum
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