A. Second Law (Review statements summarized on web page)

Entropy, S a measure of disorder

$$dS = \frac{dq_{rev}}{T} \qquad \frac{Energy}{Temperature}$$

 $\Delta S_{\text{Universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}} > 0$ Direction of spontaneous change.

B. Third Law $\lim_{T \to 0} S(\text{pure crystalline substance}) = 0$

The entropy (disorder) of a pure crystalline substance goes to zero at zero Kelvin.

There is an absolute zero for the entropy of a substance (NOT TRUE FOR ENERGY).

Can define Absolute Entropy for any substance at given temperature.

Get from heat capacity vs temperature measurements.

Compare S^0 solid, liquid, gas, and as temperature increases

C. Physical Changes

Heat/Cool substance	$\Delta S = nC_p ln(T_2/T_1)$	(HEAT CAPACITY INDEPENDENT OF TEMP)
Phase Change	$\Delta S_{phase} = \Delta H_{phase} / T_{phase}$	

Equilibrium process if done at temperature of phase change (NOTE: *NOT STANDARD TEMPERATURE*). Compare ΔS_{phase} for melting, boiling, subliming

D. Chemical Reaction $\Delta S^0_{rxn} = \sum n S^0(products) - \sum n S^0(reactants)$

Standard Absolute Entropies listed in thermodynamic tables.

F.	Surroundings	$\Delta S_{surroundings} = -\Delta H/T$	(CONSTANT PRESSURE AND TEMPERATURE)
----	--------------	---	-------------------------------------

E. Gibbs Free Energy Derived energy from Second Law $G \equiv H - TS$

 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$ $\Delta S_{system} \text{ from C or D above.} \qquad ... \qquad \Delta S_{surroundings} = -\Delta H/T$ $\Delta S_{universe} = \Delta S - \Delta H/T > 0 \qquad SPONTANEOUS (CONSTANT T & P)$ Multiply through by (-T) $-T\Delta S_{universe} = \Delta H - T\Delta S = \Delta G \qquad GIBBS FREE ENERGY$

Tells direction of spontaneous change at constant T & P We can show that $\Delta G = W(nonexpansion)$ Energy available to do non-expansion work.

$\Delta G = \Delta H - T \Delta S$	GIBBS - HELMHOLTZ EQUATION
$\Delta G < 0$	Spontaneous
$\Delta G = 0$	Equilibrium
$\Delta G > 0$	NOT Spontaneous> Spontaneous reverse direction

F. Standard Gibbs Free Energy of reaction ΔG^{0}_{rxn}

From Standard Gibbs Free Energies of Formation $\Delta G^{0}_{rxn} = \sum n \Delta G^{0}_{f}(products) - \sum n \Delta G^{0}_{f}(reactants)$

From Standard Enthalpies of Formation and Standard Absolute Entropies $\Delta G^{0}_{rxn} = \Delta H^{0}_{rxn} - T\Delta S^{0}_{rxn}$

Tells how far toward products the system is at equilibrium $\Delta G^{0}_{rxn} < 0$ PRODUCT FAVORED = SPONTANEOUS UNDER STANDARD STATE CONDITIONS $\Delta G^{0}_{rxn} > 0$ REACTANT FAVORED =NOT SPONTANEOUS UNDER STANDARD STATE CONDITIONS

G. Interpreting $\Delta G = \Delta H - T\Delta S$ CONSTANT TEMP & PRESSURE

 $\Delta H < 0$ Exothermic. Favorable (*why?*) *Enthalpy driven*

 $\Delta S > 0$ Favorable (*why*?) *Entropy driven*

 $\Delta n_{gas} > 0$ or more mixed up products

Four Cases						
Case	ΔH	ΔS	$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \Delta \mathbf{S}$	Interpretation		
1.	-	+	– ALL TEMPS	SPONTANEOUS ALL TEMPS		
2.	-	-	LOW TEMPHIGH TEMP	SPONTANEOUS AT LOW TEMP		
3.	+	+	+ LOW TEMP - HIGH TEMP	SPONTANEOUS AT HIGH TEMP		
4.	+	-	+ ALL TEMPS	NOT SPONTANEOUS ANY TEMP MUST BE DRIVEN BY EXTERNAL INFLUENCE		

For cases 2 & 3 - Temperature at which ΔG changes sign: $\Delta G = 0$ $T = (\Delta H) / (\Delta S)$ assuming ΔH and ΔS are independent of T