From the table on back of this page, what trends can you observe about absolute entropies for substances ?

Without doing any calculations, predict if the entropy for each of the following reactions is **1. positive 2. negative** or **3. approximately zero** Explain !!

- A. $2 \text{ NO}_2(g) \longrightarrow N_2O_4(g)$
- B. $N_2(g) + O_2(g) ----> 2 NO(g)$
- C. $CaCO_3(s) + 2 H^+(aq) Ca^{+2}(aq) + CO_2(g) + H_2O(l)$

Predict the sign of ΔS_{rxn}^0 for the reaction. 1. positive 2. negative or 3. approximately zero. C(graphite) + O₂(g) -----> CO₂(g)

Using the table on the back of this page, calculate ΔS^{0}_{rxn}

Predict the sign of ΔH^0 for this reaction. 1. positive 2. negative or 3. approximately zero

Using the table on the back of this page, calculate ΔH^0_{rxn}

Predict the sign of ΔS_{rxn} and ΔH_{rxn} for each of the following reactions. Classify whether they are favorable or unfavorable for a spontaneous reaction.

		ΔH_{rxn}	ΔS_{rxn}
A.	$2 \text{ NO}_2(g) \longrightarrow N_2O_4(g)$		
B.	Combustion of sucrose, $C_{12}H_{22}O_{11}(s)$		
C.	Crystallization of a supersaturated solution of sodium acetate.		

Table 19.	 Some Standard Molar Entropy Values at 298 K 			
Element	Entropy, S° (J/K · mol)	Compound	Entropy, S [°] (J/K•mol)	
C(graphite)	5.6	$CH_4(g)$	186.3	
C(diamond)	2.377	$C_2H_6(g)$	229.2	
C(vapor)	158.1	$C_3H_8(g)$	270.3	
Ca(s)	41.59	$CH_3OH(\ell)$	127.2	
Ar(g)	154.9	CO(g)	197.7	
H ₂ (g)	130.7	$CO_2(g)$	213.7	
0 ₂ (g)	205.1	H ₂ O(g)	188.84	
N ₂ (g)	191.6	$H_2O(\ell)$	69.95	
$F_2(g)$	202.8	HCl(g)	186.2	
Cl ₂ (g)	223.1	NaCl(s)	72.11	
$Br_2(\ell)$	152.2	MgO(s)	26.85	
$I_2(s)$	116.1	$CaCO_3(s)$	91.7	

© 2003 Thomson - Brook

	Standard Molar Enthalpies of Formation (kJ/mol)
CH ₄ (g)	- 75
CO ₂ (g)	- 394
NO ₂ (g)	33.2
H ₂ O(g)	- 242
H ₂ O(l)	- 286
NH ₃ (g)	- 46
Mg(OH) ₂ (s)	- 602
CO(g)	-111