Chapter 7 - Lecture Worksheet 2

1. Predict the sign of ΔG^0_{rxn} for each of the following reactions.	$\Delta G^{0}_{rxn} = \Delta H^{0} - T\Delta S^{0}$
A. Melt ice	3. Negative at HIGH Temperatures
Endothermic, $\Delta H^0_{rxn} > 0$ More Random, $\Delta S^0_{rxn} > 0$	
B. Combustion of sucrose, $C_{12}H_{22}O_{11}(s)$	2. Negative ALL Temperatures
Exothermic, $\Delta H^0_{rxn} < 0$ More Random, $\Delta S^0_{rxn} > 0$	
C. Crystallization of a supersaturated solution of sodium acetate.	4. Negative at LOW Temperatures
Exothermic, $\Delta H^0_{rxn} < 0$ Less Random, $\Delta S^0_{rxn} < 0$	

PRS Answers	
1. Positive ALL Temperatures	3. Negative at HIGH Temperatures
2. Negative ALL Temperatures	4. Negative at LOW Temperatures

- Which reaction is favorable in terms of both the enthalpy and the entropy ? 1. A 2. B 3. C
 Which reaction is "entropy driven" but unfavorable in terms of the enthalpy ? 1. A 2. B 3. C
 Which reaction is "enthalpy driven" but unfavorable in terms of the entropy ? 1. A 2. B 3. C
- 5. Write two expressions the show how to calculate the **standard** Gibbs Free Energy change for the decomposition of sulfur trioxide from tabulated values:

$2 \text{ SO}_3(g)> 2 \text{ SO}_2(g) + \text{ O}_2(g)$		
A. $\Delta G^0 = \Delta H^0 - T \Delta S^0$	B. $\Delta G^0 = 2\Delta G^0_f(SO_2(g)) - 2\Delta G^0_f(SO_3(g))$	
Get ΔH^0 from table of Standard Heats of Formation	Get ΔG^{0}_{f} from table of Standard Gibbs Free	
Get ΔS^0 from table of Standard Absolute Entropies	Energies of Formation	

C. For this reaction $\Delta H^0_{rxn} = 197.78 \text{ kJ/mol}$ and $\Delta S^0_{rxn} = 188.06 \text{ J/mol}$ K. Calculate ΔG^0_{rxn} at 298K.

 $\Delta G^{0}_{rxn} = \Delta H^{0}_{rxn} - T\Delta S^{0}_{rxn} = 197.78 \text{ kJ/mol} - (298 \text{ K})(188.06 \text{ J/mol} \text{ K})(1\text{kJ}/1000 \text{ J}) = 142 \text{ kJ/mol}$

D. Under standard state conditions is the reaction spontaneous at 25°C? **1. YES 2. NO 2. MAYBE**

 $\Delta G_{rxn}^0 > 0$ Equilibrium lies toward reactants and under standard state conditions the reaction is not spontaneous.

E. If it is not spontaneous at 25° C, is there a temperature at which it it will become so?

Yes. Find this T where ΔG^{0}_{rxn} changes sign. Set $\Delta G^{0}_{rxn} = 0$ then $\Delta H^{0}_{rxn} = T\Delta S^{0}_{rxn}$

 $T = (\Delta H^{0}_{rxn})/(\Delta S^{0}_{rxn}) = (197.78 \text{ kJ/mol})(1000 \text{ J/kJ}) /(188.06 \text{ J/mol K}) = 1052 \text{ K}$

Above this temp, rxn becomes product favored and spontaneous under standard state conditions.