1A. LA Smog is composed of nitrogen oxide emissions. Draw Lewis structures:

 $2NO_2(g) \iff N_2O_4(g)$

B.	This reactions is:	1. ENDOTHERMIC	2. Exothermic	3. CANNOT TELL
----	--------------------	-----------------------	----------------------	-----------------------

C. At equilibrium:

- 1. $[NO_2] = [N_2O_4]$ 2. $[NO_2]^2 = [N_2O_4]$
- 3. $2[NO_2] = [N_2O_4]$
- 4. $k_{\text{forward}} = k_{\text{reverse}}$
- 5. $Rate_{forward} = Rate_{reverse}$

D. Experimental data. Draw some conclusions:

Initial Concs (M)		Final Concs (M)	
$[NO_2(g)]_0$	$[N_2O_4(g)]_0$	$[NO_2(g)]_{eq}$	$\left[N_2O_4(g)\right]_{\text{eq}}$
0.000	0.670	0.0547	0.643
0.0500	0.445	0.0457	0.448
0.0300	0.500	0.0475	0.491
0.0400	0.600	0.0523	0.594
0.200	0.00	0.0204	0.0898

Ratios of Equilibrium Concentrations (25^oC)

$\frac{[N_2O_4(g)]}{[NO_2(g)]}$	$\frac{[N_2O_4(g)]}{[NO_2(g)]^2}$
11.76	215
9.80	215
10.34	218
11.36	217
4.4	216

E. Why does this work ? Assume a 1 step mechanism and find the ratio $(k_{forward} / k_{reverse})$

2.	Write equilibrium constant expression for:	
	$N_2(g) + 3H_2(g) <> 2NH_3(g)$	 For reaction A at 25°C, K_{eq} = 3.5 x 10⁸. We can say that at equilibrium: 1. There is a lot of NH₃ relative to N₂ and H₂ 2. There is a lot of N₂ relative to NH₃ and H₂ 3. There is a lot of H₂ relative to NH₃ and N₂ 4. There is about the same amount of NH₃ as N₂ and H₂ 5. Cannot tell from the information given.
3.	Write equilibrium constant expression for: $CaCO_3(s) \iff Ca^{2+}(aq) + CO_3^{2-}(aq)$	 For reaction B at 25°C, K_{eq} = 9.8 x 10⁻⁹. We can say that: 1. CaCO₃(s) is very soluble. 2. CaCO₃(s) is not very soluble. 3. Cannot tell from the information given.

4. Write the equilibrium constant expression for: $2NH_3(g) < ... > N_2(g) + 3H_2(g)$ How is this related to the expression for K in question 2 above ?

5. Write the equilibrium constant expression for: $1/2 N_2(g) + 3/2 H_2(g) < \dots > NH_3(g)$ How is this related to the expression for K in question 2 above ?

6. Conclusions ?

PRS Answers		
1. $K = K_A$	6. $K = (K_A)^2$	
2. $K = (1/K_A)$	7. $K = (1/K_A)^{1/2}$	
3. $K = 2 (1/K_A)$	8. $K = (1/2)(1/K_A)^{1/2}$	
4. $K = 2K_A$	9. $K = (K_A)^{1/2}$	
5. $K = (1/K_A)^2$		