Chapter 9 - Lecture Worksheet 1

1A. LA Smog is composed of nitrogen oxide emissions. Draw Lewis structures:
$\mathbf{2 N O}(\mathrm{g})<----->\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

B. This reactions is: 1. ENDOTHERMIC 2. EXOTHERMIC 3. CANNOT TELL

C. At equilibrium:

1. $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
2. $\left[\mathrm{NO}_{2}\right]^{2}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
3. $2\left[\mathrm{NO}_{2}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
4. $\mathrm{k}_{\text {forward }}=\mathrm{k}_{\text {reverse }}$
5. Rate $_{\text {forward }}=$ Rate $_{\text {reverse }}$
D. Experimental data. Draw some conclusions:

Initial	Concs (M)					
$\left[\mathrm{NO}_{2}(\mathrm{~g})\right]_{0}$	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]_{0}$	$	$	0.000	0.670	
:---:	:---:	:---:				
0.0500	0.445					
0.0300	0.500					
0.0400	0.600					
0.200	0.00	Final $\left[\mathrm{NO}_{2}(\mathrm{~g})\right]_{\mathrm{eq}}$				
0.0547	Concs (M) $\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]_{\mathrm{eq}}$					
0.0457	0.643					
0.0475	0.448					
0.0523	0.491					
0.0204	0.594					
	0.0898					

Ratios of Equilibrium Concentrations $\left(\mathbf{2 5}^{\mathbf{0}} \mathrm{C}\right)$

$\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]}$
11.76
9.80
10.34
11.36
4.4

E. Why does this work ? Assume a 1 step mechanism and find the ratio ($\left.\mathbf{k}_{\text {forward }} / \mathbf{k}_{\text {reverse }}\right)$
2. Write equilibrium constant expression for:

For reaction A at $25^{0} \mathrm{C}, \mathbf{K}_{\mathbf{e q}}=\mathbf{3 . 5} \times 1 \mathbf{1 0}^{\mathbf{8}}$.
We can say that at equilibrium:

1. There is a lot of NH_{3} relative to N_{2} and H_{2}
2. There is a lot of N_{2} relative to NH_{3} and H_{2}
3. There is a lot of H_{2} relative to NH_{3} and N_{2}
4. There is about the same amount of NH_{3} as
N_{2} and H_{2}
5. Cannot tell from the information given.
6. Write equilibrium constant expression for: \quad For reaction B at $25^{\circ} \mathrm{C}, \mathbf{K}_{\mathbf{e q}}=\mathbf{9 . 8} \times 10^{-9}$. $\mathbf{C a C O}_{\mathbf{3}}(\mathbf{s})<---->\mathbf{C a}^{\mathbf{2 +}} \mathbf{(a q)}+\mathbf{C O}_{3}{ }^{\mathbf{2 -}} \mathbf{(a q)}$ We can say that:
7. $\mathrm{CaCO}_{3}(\mathrm{~s})$ is very soluble.
8. $\mathrm{CaCO}_{3}(\mathrm{~s})$ is not very soluble.
9. Cannot tell from the information given.
10. Write the equilibrium constant expression for: $\mathbf{2 N H}_{\mathbf{3}}(\mathbf{g})<----->\mathbf{N}_{\mathbf{2}}(\mathbf{g})+\mathbf{3 H}_{\mathbf{2}}(\mathbf{g})$ How is this related to the expression for K in question 2 above ?
11. Write the equilibrium constant expression for: $1 / 2 \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3 / 2} \mathbf{H}_{\mathbf{2}}(\mathrm{g})<----->\mathbf{N H}_{\mathbf{3}}(\mathrm{g})$ How is this related to the expression for K in question $\mathbf{2}$ above ?
12. Conclusions?

PRS Answers	
$1 . \mathrm{K}=\mathrm{K}_{\mathrm{A}}$	$6 . \mathrm{K}=\left(\mathrm{K}_{\mathrm{A}}\right)^{2}$
$2 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)$	$7 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$3 . \mathrm{K}=2\left(1 / \mathrm{K}_{\mathrm{A}}\right)$	8. $\mathrm{K}=(1 / 2)\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$4 . \mathrm{K}=2 \mathrm{~K}_{\mathrm{A}}$	9. $\mathrm{K}=\left(\mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$5 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{2}$	

