

Break no bonds ($E_{in} = 0$) ... Make one bond ($E_{out} > 0$) EXOTHERMIC reaction

B. This reactions is:	1. ENDOTHERMIC	2. EXOTHERMIC	3. CANNOT TELL
C. At equilibrium:			
1. $[NO_2] = [N_2O_4]$	6. Both 1 &	4 are correct	
2. $[NO_2]^2 = [N_2O_4]$	7. Both 2 &	4 are correct	
3. $2[NO_2] = [N_2O_4]$	8. Both 3 & 4 are correct		
4. $k_{\text{forward}} = k_{\text{reverse}}$	9. Both 1 & 5 are correct		
5. Rate _{forward} = Rate _{rever}	0. 1, 4 & 5 are all correct		

D. Experimental data. Draw some conclusions:

D. Experimental data: Draw some conclusions.				
Initial Concs (M)			Final	Concs (M)
$[NO_2(g)]_0$	$[N_2O_4(g)]_0$		$[NO_2(g)]_{eq}$	$\left[N_2O_4(g)\right]_{\text{eq}}$
0.000	0.670		0.0547	0.643
0.0500	0.445		0.0457	0.448
0.0300	0.500		0.0475	0.491
0.0400	0.600		0.0523	0.594
0.200	0.00		0.0204	0.0898

Ratios of Equilibrium Concentrations (25°C)

$\frac{[N_2O_4(g)]}{[NO_2(g)]}$	$\frac{[\mathbf{N}_2\mathbf{O}_4(\mathbf{g})]}{[\mathbf{N}\mathbf{O}_2(\mathbf{g})]^2}$
11.76	215
9.80	215
10.34	218
11.36	217
4.4	216

Start with different initial concentrations, always get more N_2O_4 than NO_2 at equilibrium. Doesn't matter if start with all NO_2 or all N_2O_4 . Independent of direction. Ratio $[N_2O_4(g)]/[NO_2(g)]^2$ = constant.

E. Why does this work ? Assume a 1 step mechanism and find the ratio (k_{forward} / k_{reverse})

$$\begin{aligned} & \text{Rate}_{forward} = \text{Rate}_{reverse} \\ & k_{forward} [NO_2]^2 = k_{reverse} [N_2O_4] \\ & \left(\frac{k_{forward}}{k_{reverse}}\right) = \frac{[N_2O_4]}{[NO_2]^2} = Constan t = K_c \text{ ... the Equilibrium Constant} \end{aligned}$$

2. Write equilibrium constant expression for:	
$N_2(g) + 3H_2(g) <> 2NH_3(g)$	For reaction A at 25° C, $K_{eq} = 3.5 \times 10^{8}$.
	We can say that at equilibrium:
	1. There is a lot of NH_3 relative to N_2 and H_2
$[NH_{-}]^{2}$	2. There is a lot of N_2 relative to NH_3 and H_2
$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$	3. There is a lot of H_2 relative to NH_3 and N_2
	4. There is about the same amount of NH_3 as
	N_2 and H_2
	5. Cannot tell from the information given.
	C
3. Write equilibrium constant expression for:	For reaction B at 25° C, $K_{eq} = 9.8 \times 10^{-9}$.
3. Write equilibrium constant expression for: $CaCO_3(s) <> Ca^{2+}(aq) + CO_3^{2-}(aq)$	We can say that:
	1. $CaCO_3(s)$ is very soluble.
$K_{c} = [Ca^{2+}(aq)][CO_{3}^{2-}(aq)]$	2. CaCO ₃ (s) is not very soluble.
$\mathbf{K}_{c} = \begin{bmatrix} \mathbf{C}u & (uq) \end{bmatrix} \begin{bmatrix} \mathbf{C}O_{3} & (uq) \end{bmatrix}$	3. Cannot tell from the information given.
Note: $[CaCO_3(s)] = constant$	6
Do not include pure solids or pure liquids in K	
expression	

4. Write the equilibrium constant expression for: $2NH_3(g) < ... > N_2(g) + 3H_2(g)$ How is this related to the expression for K in question 2 above ?

$$K_4 = \frac{[N_2][H_2]^3}{[NH_3]^2} = 1/K_2$$

5. Write the equilibrium constant expression for: $1/2 N_2(g) + 3/2 H_2(g) < \dots > NH_3(g)$ How is this related to the expression for K in question 2 above ?

$$K_5 = \frac{[NH_3]}{[N_2]^{1/2}[H_2]^{3/2}} = (\mathbf{K}_2)^{1/2}$$

6. Conclusions ?

Reverse reaction - Take reciprocal of K

Multiply reaction by n - Raise K to power of n

PRS Answers		
1. $K = K_A$	6. $K = (K_A)^2$	
2. $K = (1/K_A)$	7. $K = (1/K_A)^{1/2}$	
3. $K = 2 (1/K_A)$	8. $K = (1/2)(1/K_A)^{1/2}$	
4. $K = 2K_A$	9. $K = (K_A)^{1/2}$	
5. $K = (1/K_A)^2$		