Chapter 9- Lecture Worksheet 1

1A. LA Smog is composed of nitrogen oxide emissions. Draw Lewis structures:

$$
2 \mathrm{NO}_{2}(\mathrm{~g})<----->\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

Break no bonds $\left(\mathrm{E}_{\mathrm{in}}=0\right)$... Make one bond $\left(\mathrm{E}_{\text {out }}>0\right)$
EXOTHERMIC reaction
B. This reactions is: 1. ENDOTHERMIC 2. EXOTHERMIC 3. CANNOT TELL
C. At equilibrium:

1. $\left[\mathrm{NO}_{2}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
2. Both $1 \& 4$ are correct
3. $\left[\mathrm{NO}_{2}\right]^{2}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
4. Both $2 \& 4$ are correct
5. $2\left[\mathrm{NO}_{2}\right]=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
6. Both $3 \& 4$ are correct
7. $\mathrm{k}_{\text {forward }}=\mathrm{k}_{\text {reverse }}$
8. Both $1 \& 5$ are correct
9. Rate $_{\text {forward }}=$ Rate $_{\text {reverse }}$

0 . $1,4 \& 5$ are all correct
D. Experimental data. Draw some conclusions:

Initial	Concs (M)
$\left[\mathrm{NO}_{2}(\mathrm{~g})\right]_{0}$	$\left[\mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]_{0}$
$\mathbf{0 . 0 0 0}$	$\mathbf{0 . 6 7 0}$
0.0500	0.445
0.0300	0.500
0.0400	0.600
$\mathbf{0 . 2 0 0}$	$\mathbf{0 . 0 0}$
$\left[\mathrm{NO}_{2}(\mathrm{~g})\right]_{\mathrm{eq}}$	$\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]_{\mathrm{eq}}$
$\mathbf{0 . 0 5 4 7}$	$\mathbf{0 . 6 4 3}$
0.0457	0.448
0.0475	0.491
0.0523	0.594
$\mathbf{0 . 0 2 0 4}$	$\mathbf{0 . 0 8 9 8}$

Ratios of Equilibrium Concentrations $\left(25^{\circ} \mathrm{C}\right)$

$\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]}{\left[\mathrm{NO}_{2}(\mathrm{~g})\right]}$
11.76
9.80
10.34
11.36
4.4

Start with different initial concentrations, always get more $\mathrm{N}_{2} \mathrm{O}_{4}$ than NO_{2} at equilibrium. Doesn't matter if start with all NO_{2} or all $\mathrm{N}_{2} \mathrm{O}_{4}$. Independent of direction.
Ratio $\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right] /\left[\mathrm{NO}_{2}(\mathrm{~g})\right]^{2}=$ constant.
E. Why does this work ? Assume a 1 step mechanism and find the ratio ($\left.\mathbf{k}_{\text {forward }} / \mathbf{k}_{\text {reverse }}\right)$

Rate $_{\text {forward }}=$ Rate $_{\text {reverse }}$
$k_{\text {forward }}\left[\mathrm{NO}_{2}\right]^{2}=k_{\text {reverse }}\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$
$\left(\frac{k_{\text {forvard }}}{k_{\text {reverse }}}\right)=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}=$ Constan $t=K_{c} \ldots$ the Equilibrium Constant
2. Write equilibrium constant expression for:

For reaction A at $25^{\circ} \mathrm{C}, \mathbf{K}_{\text {eq }}=\mathbf{3 . 5} \times 1 \mathbf{1 0}^{\mathbf{8}}$.
We can say that at equilibrium:

1. There is a lot of NH_{3} relative to \mathbf{N}_{2} and \mathbf{H}_{2}

$$
K_{c}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}
$$

2. There is a lot of N_{2} relative to NH_{3} and H_{2}
3. There is a lot of H_{2} relative to NH_{3} and N_{2}
4. There is about the same amount of NH_{3} as
N_{2} and H_{2}
5. Cannot tell from the information given.
6. Write equilibrium constant expression for: \quad For reaction B at $25^{\circ} \mathrm{C}, \mathbf{K}_{\mathrm{eq}}=\mathbf{9 . 8} \times 1 \mathbf{1 0}^{-9}$.
$\mathrm{CaCO}_{3}(\mathrm{~s})<-\ldots \mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$

$$
K_{c}=\left[C a^{2+}(a q)\right]\left[C O_{3}^{2-}(a q)\right]
$$

Note: $\left[\mathrm{CaCO}_{3}(\mathrm{~s})\right]=$ constant
Do not include pure solids or pure liquids in K expression

We can say that:

1. $\mathrm{CaCO}_{3}(\mathrm{~s})$ is very soluble.
2. $\mathrm{CaCO}_{3}(\mathrm{~s})$ is not very soluble.
3. Cannot tell from the information given.
4. Write the equilibrium constant expression for: $\mathbf{2 N H}_{\mathbf{3}}(\mathrm{g})<----->\mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3} \mathbf{H}_{\mathbf{2}}(\mathrm{g})$

How is this related to the expression for K in question $\mathbf{2}$ above ?

$$
K_{4}=\frac{\left[N_{2}\right]\left[H_{2}\right]^{3}}{\left[N H_{3}\right]^{2}}=\mathbf{1} / \mathbf{K}_{2}
$$

5. Write the equilibrium constant expression for: $1 / 2 \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{3 / 2} \mathbf{H}_{\mathbf{2}}(\mathrm{g})<----->\mathbf{N H}_{3}(\mathrm{~g})$ How is this related to the expression for K in question $\mathbf{2}$ above ?

$$
K_{5}=\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}}=\left(\mathbf{K}_{2}\right)^{1 / 2}
$$

6. Conclusions ?

Reverse reaction - Take reciprocal of K
Multiply reaction by \mathbf{n} - Raise K to power of \mathbf{n}

PRS Answers	
$1 . \mathrm{K}=\mathrm{K}_{\mathrm{A}}$	$6 . \mathrm{K}=\left(\mathrm{K}_{\mathrm{A}}\right)^{2}$
$2 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)$	$7 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$3 . \mathrm{K}=2\left(1 / \mathrm{K}_{\mathrm{A}}\right)$	8. $\mathrm{K}=(1 / 2)\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$4 . \mathrm{K}=2 \mathrm{~K}_{\mathrm{A}}$	9. $\mathrm{K}=\left(\mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
$5 . \mathrm{K}=\left(1 / \mathrm{K}_{\mathrm{A}}\right)^{2}$	

