2. This reaction is:

The equilibrium constant, K _c , for the reaction:					
$CO_2(g) \iff CO(g) + 1/2 O_2(g)$ is 6.7 x 10 ⁻¹² at 1000 K.					
1.	. Calculate K_c for the reaction: 2 C	$O(g) + O_2(g) <> 2 CO_2(g)$	g)		
1.	$. 6.7 \times 10^{-12}$				
2.	2. 1.3×10^{-11}				
3.	3. 2.5 x 10 ⁻⁶				
4.	3.9×10^{5}				
5.	5. 1.5×10^{11}				
6.	5. 3.0×10^{11}				
7.	2. 2.2×10^{22}				

1. Reactant favored

3. Consider the nitrogen dioxide equilibrium: 2 NO₂(g) <----> N₂O₄(g)
Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below:

2. Product favored

at equilibrium.

 $N_2(g) + 2 O_2(g) < ----> N_2O_4(g)$ Ka a.) b.) $1/2 N_2(g) + O_2(g) < \dots > NO_2(g)$ Kb 1. $K = K_A K_B$ 2. $K = (K_A/K_B)$ 3. $K = 2 (K_A/K_B)$ 4. $K = 2(K_B/K_A)$ 5. $K = (K_A/K_B)^2$ 6. $K = K_A / (K_B)^2$ 7. $K = (K_B/K_A)^{1/2}$ 8. $K = (1/2)(K_A/K_B)^{1/2}$ 9. K = $(1/2)(K_A)/(K_B)^2$

4. The formation of ammonia is an extremely important reaction worldwide for the production of fertilizers and explosives. At 25° C the equilibrium constant, Kc, is 3.5 x 10^{8} . N₂(g) + 3H₂(g) <----> 2NH₃(g)

A. If for the NH₃ reaction above at 25°C, the reaction quotient is equal to 3.5, we can say that:

- 1. More NH₃(g) must form in order to reach equilibrium.
- 2. More $N_2(g)$ must form in order to reach equilibrium.
- 3. More $H_2(g)$ must form in order to reach equilibrium.
- 4. The reaction is at equilibrium.
- 5. Cannot tell from the information given.

In another experiment the reaction has run for a while and the concentrations are found to be: Nitrogen $7x10^{-2}$ M Hydrogen $9x10^{-3}$ M Ammonia $2x10^{-4}$ M

В.	In order to reach equilibrium the reaction must:	C. Why ?
	1. Run in the forward direction.	1. $\mathbf{Q} > \mathbf{K}$
	2. Run in the reverse direction	2. $Q = K$
	3. The reaction is at equilibrium	3. $Q < K$

How does ΔG relate to ΔG^0 and Q ?	How does ΔG^0 relate to K ?
What does ΔG tell us about a chemical reaction ?	What does ΔG^0 tell us about a chemical reaction ?