Chapter 9-Lecture Worksheet 2

The equilibrium constant, K_{c}, for the reaction:

$$
\mathbf{C O}_{2}(\mathrm{~g})<--->\mathbf{C O}(\mathrm{g})+\mathbf{1 / 2} \mathbf{O}_{2}(\mathrm{~g}) \quad \text { is } 6.7 \times 10^{-12} \text { at } 1000 \mathrm{~K} .
$$

1. Calculate K_{c} for the reaction: $2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})<--->2 \mathrm{CO}_{2}(\mathrm{~g})$
2. 6.7×10^{-12}
3. 1.3×10^{-11}
4. 2.5×10^{-6}
5. 3.9×10^{5}
6. 1.5×10^{11}
7. 3.0×10^{11}
8. 2.2×10^{22}
9. This reaction is: 1. Reactant favored 2. Product favored at equilibrium.
10. Consider the nitrogen dioxide equilibrium:
$2 \mathrm{NO}_{2}(\mathrm{~g})<-\ldots--->\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
Write the equilibrium constant for this reaction in terms of the equilibrium constants, $\mathbf{K a}$ and $\mathbf{K b}$, for reactions \mathbf{a} and \mathbf{b} below:
a.) $\quad \mathbf{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})<--->\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$

Ka
b.) $\mathbf{1 / 2} \mathbf{N}_{\mathbf{2}}(\mathrm{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g})<---->\mathbf{N O}_{\mathbf{2}}(\mathrm{g})$ Kb

1. $\mathrm{K}=\mathrm{K}_{\mathrm{A}} \mathrm{K}_{\mathrm{B}}$
2. $\mathrm{K}=\left(\mathrm{K}_{\mathrm{A}} / \mathrm{K}_{\mathrm{B}}\right)$
3. $\mathrm{K}=2\left(\mathrm{~K}_{\mathrm{A}} / \mathrm{K}_{\mathrm{B}}\right)$
4. $\mathrm{K}=2\left(\mathrm{~K}_{\mathrm{B}} / \mathrm{K}_{\mathrm{A}}\right)$
5. $\mathrm{K}=\left(\mathrm{K}_{\mathrm{A}} / \mathrm{K}_{\mathrm{B}}\right)^{2}$
6. $\mathrm{K}=\mathrm{K}_{\mathrm{A}} /\left(\mathrm{K}_{\mathrm{B}}\right)^{2}$
7. $\mathrm{K}=\left(\mathrm{K}_{\mathrm{B}} / \mathrm{K}_{\mathrm{A}}\right)^{1 / 2}$
8. $K=(1 / 2)\left(K_{A} / K_{B}\right)^{1 / 2}$
9. $\mathrm{K}=(1 / 2)\left(\mathrm{K}_{\mathrm{A}}\right) /\left(\mathrm{K}_{\mathrm{B}}\right)^{2}$
10. The formation of ammonia is an extremely important reaction worldwide for the production of fertilizers and explosives. At $25^{\circ} \mathrm{C}$ the equilibrium constant, Kc , is $\mathbf{3 . 5} \mathbf{x 1 0} \mathbf{1 0}^{\mathbf{8}}$.

$$
\mathbf{N}_{2}(\mathrm{~g})+3 \mathbf{H}_{2}(\mathrm{~g})<-\cdots--->\quad \mathbf{2} \mathrm{NH}_{3}(\mathrm{~g})
$$

A. If for the NH_{3} reaction above at $25^{\circ} \mathrm{C}$, the reaction quotient is equal to 3.5 , we can say that:

1. More $\mathrm{NH}_{3}(\mathrm{~g})$ must form in order to reach equilibrium.
2. More $\mathrm{N}_{2}(\mathrm{~g})$ must form in order to reach equilibrium.
3. More $\mathrm{H}_{2}(\mathrm{~g})$ must form in order to reach equilibrium.
4. The reaction is at equilibrium.
5. Cannot tell from the information given.

In another experiment the reaction has run for a while and the concentrations are found to be:
Nitrogen $\mathbf{7 \times 1 0 ^ { - 2 }} \mathbf{M} \quad$ Hydrogen $\mathbf{9 x 1 0} \mathbf{~} \mathbf{M}^{-3} \quad$ Ammonia $\mathbf{2 x 1 0} \mathbf{M}$
B. In order to reach equilibrium the reaction must:

1. Run in the forward direction.
C. Why ?
2. Run in the reverse direction
3. $\mathrm{Q}>\mathrm{K}$
4. The reaction is at equilibrium
5. $\mathrm{Q}=\mathrm{K}$
6. $\mathrm{Q}<\mathrm{K}$

How does $\Delta \mathrm{G}$ relate to $\Delta \mathrm{G}^{0}$ and Q ?

What does $\Delta \mathrm{G}$ tell us about a chemical reaction?

How does $\Delta \mathrm{G}^{0}$ relate to K ?

What does $\Delta \mathrm{G}^{0}$ tell us about a chemical reaction?

