Chapter 9 - Lecture Worksheet 3

1. For the following reaction $\Delta \mathrm{H}^{0}=-197.8 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{0}=-187.9 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. Assuming that $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are independent of temperature, calculate the equilibrium constant for this reaction at 262 K .

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<----->2 \mathrm{SO}_{3}(\mathrm{~g})
$$

A.) 1.7×10^{-10}
B.) 2.4×10^{-30}
C.) 5.9×10^{9}
D.) 4.2×10^{29}
E.) 7.2×10^{99}

2A. Carbonyl bromide, COBr_{2}, decomposes to CO and Br_{2} at $73^{\circ} \mathrm{C}$. If you begin with 0.10 moles of COBr_{2} in a 2.5 Liter flask and find that there are 0.015 moles of COBr_{2} at equilibrium, what are the concentrations of CO and Br_{2} at equilibrium ? You must use the ICE method to solve this problem.
$\mathrm{COBr}_{2}(\mathrm{~g}) \quad<---->\mathrm{CO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$

1. 0.0030 M
2. 0.0060 M
3. 0.040 M
4. 0.085 M
5. 0.034 M
6. 0.068 M
B. What is the value of the equilibrium constant K_{c} at $73^{\circ} \mathrm{C}$?
7. 0.18
8. 0.19
9. 5.2
10. 5.7
C. This reaction is
11. REACTANT FAVORED 2. PRODUCT FAVORED 3. Not strongly REACTANT OR PRODUCT FAVORED at equilibrium.
D. You would expect $\Delta \mathrm{G}^{0}$ to be
E. This is because
F. Calculate ΔG^{0} for this reaction.
G. Do you think $\Delta \mathrm{G}^{0}$ will change sign at high temperature vs low temperature? 1. Yes 2. No Explain.
H. Sketch a Gibbs Free Energy diagram v.s. Extent of reaction diagram for this reaction. (Label everything!) Show the region where $\mathrm{Q}<\mathrm{K}, \mathrm{Q}=\mathrm{K}$ and $\mathrm{Q}>\mathrm{K}$.
