Chapter 9 - Lecture Worksheet 3

- 1. For the following reaction $\Delta H^0 = -197.8 \text{ kJ/mol}$ and $\Delta S^0 = -187.9 \text{ J/mol} \text{ K}$. Assuming that ΔH^0 and ΔS^0 are independent of temperature, calculate the equilibrium constant for this reaction at 262 K. $2SO_2(g) + O_2(g) < ----> 2SO_3(g)$
- A.) 1.7 x 10⁻¹⁰
- B.) 2.4×10^{-30}
- C.) 5.9 x 10⁹
- D.) 4.2 x 10²⁹
- E.) 7.2 x 10⁹⁹

2A. Carbonyl bromide, $COBr_2$, decomposes to CO and Br_2 at 73°C. If you begin with 0.10 moles of $COBr_2$ in a 2.5 Liter flask and find that there are 0.015 moles of $COBr_2$ at equilibrium, what are the concentrations of CO and Br_2 at equilibrium ? You must use the ICE method to solve this problem. $COBr_2$ (g) <-----> CO(g) + $Br_2(g)$

1.	0.0030 M
2.	0.0060 M
3.	0.040 M
4.	0.085 M
5.	0.034 M
6.	0.068 M

B. What is the value of the equilibrium constant K_c at 73^oC?

1.	0.18
2.	0.19
3.	5.2
4.	5.7

C. This reaction is

1. REACTANT FAVORED 2. PRODUCT FAVORED 3. Not strongly REACTANT OR PRODUCT FAVORED at equilibrium.

D. You would expect ΔG^0 to be **1.** GREATER THAN ZERO **2.** LESS THAN ZERO **3.** EQUAL TO ZERO

E. This is because

- **F.** Calculate ΔG^0 for this reaction.
- G. Do you think ΔG^0 will change sign at high temperature vs low temperature ? **1. Yes 2. No** Explain.

H. Sketch a Gibbs Free Energy diagram *v.s.* Extent of reaction diagram for this reaction. *(Label everything!)* Show the region where Q < K, Q = K and Q > K.