1. For the following reaction $\Delta H^0 = -197.8 \text{ kJ/mol}$ and $\Delta S^0 = -187.9 \text{ J/mol} \text{ K}$. Assuming that ΔH^0 and ΔS^0 are independent of temperature, calculate the equilibrium constant for this reaction at 262 K. $2SO_2(g) + O_2(g) < ----> 2SO_3(g)$

 $\Delta G^0 = \Delta H^0 - T\Delta S^0 = - RT \ln K$ = -197.8 kJ/mol - (262 K)(-187.9 J/mol K)(1 kJ/1000 J) = -148.57 kJ/mol

$$K = e^{\frac{-\Delta G^0}{RT}} = e^{\frac{-(-148.57kJ/mol)}{(8.314J/molK)(262K)} \left(\frac{1000J}{kJ}\right)} = e^{+68.21} = 4.2 \times 10^{25}$$

2A. Carbonyl bromide, $COBr_2$, decomposes to CO and Br_2 at $73^{\circ}C$. If you begin with 0.10 moles of $COBr_2$ in a 2.5 Liter flask and find that there are 0.015 moles of $COBr_2$ at equilibrium, what are the concentrations of CO and Br_2 at equilibrium? You must use the ICE method to solve this problem.

	COBr ₂ (g)	<>	CO(g) +	$Br_2(g)$
Initial	(0.10 mol/2.5 L) = 0.040 M		0	0
Change	<u>–X</u>		<u>+x</u>	<u>+x</u>
Equilibrium	0.040 - x = (0.015 mol / 2.5 L)		Х	Х

$$(0.015 \text{ mol} / 2.5 \text{ L}) = 0.0060 \text{ M} = 0.040 - \text{x}$$

= 0.0060 M = [COBr₂(g)]_{eq}
x = 0.040 - 0.0060 M = 0.034 M = [CO(g)]_{eq} = [Br₂(g)]_{eq}

5. What is the value of the equilibrium constant K_c at 73°C?

$$Kc = \frac{[CO(g)][Br_2(g)]}{[COBr_2]} = \frac{(0.034)(0.034)}{(0.0060)} = 0.19$$

Since Kc is between 10^{-3} and 10^{3} , will get significant concs of both reactants and products at equilibrium.

6. This reaction is 1. REACTANT FAVORED 2. PRODUCT FAVORED at equilibrium.

Question 4	Question 5
1. 0.0030 M	1. 0.18
2. 0.0060 M	2. 0.19
3. 0.040 M	3. 5.2
4. 0.085 M	4. 5.7
5. 0.034 M	
6. 0.068 M	

D. You would expect ΔG^0 to be **1.** GREATER THAN ZERO **2.** LESS THAN ZERO **3.** EQUAL TO ZERO

- **E.** This is because K < 1
- **F.** Calculate ΔG^0 for this reaction.

 $\Delta G^0 = -RT \ln K = -(8.314 \text{ J/molK})(262 \text{ K}) \ln (0.19) = +3,618 \text{ J/mol} = 3.6 \text{ kJ/mol}$

G. Do you think ΔG^0 will change sign at high temperature vs low temperature ? **1. Yes 2. No** Explain.

$$\Delta G^0 = \Delta H^0 - T \Delta S^0$$

For this reaction $\Delta S^0 > 0$ because there are more moles of product gas than reactant ($\Delta n_{gas} = 2 - 1 = 1$) Therefore as T increases expect that ΔG^0 will become negative.

H. Sketch a Gibbs Free Energy diagram *v.s.* Extent of reaction diagram for this reaction. *(Label everything!)* Show the region where Q < K, Q = K and Q > K.

