Chapter 9 - Lecture Worksheet 3

1. For the following reaction $\Delta \mathrm{H}^{0}=-197.8 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}^{0}=-187.9 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. Assuming that $\Delta \mathrm{H}^{0}$ and $\Delta \mathrm{S}^{0}$ are independent of temperature, calculate the equilibrium constant for this reaction at 262 K . $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})<----->2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{gathered}
\begin{array}{|c|}
\hline \Delta \mathrm{H}^{0}=-197.8 \mathrm{~kJ} / \mathrm{mol} \\
\hline \Delta \mathrm{~S}^{0}=-187.9 \mathrm{~J} / \mathrm{mol} \mathrm{~K} \\
\hline \mathrm{~T}=262 \mathrm{~K} \\
\hline \mathrm{~K}=? \\
\hline
\end{array} \\
=-197.8 \mathrm{~kJ} / \mathrm{mol}-\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0}=-\mathrm{RT} \operatorname{lnK} \\
(262 \mathrm{~K})(-187.9 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(1 \mathrm{~kJ} / 1000 \mathrm{~J})=-148.57 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

$$
K=e^{\frac{-\Delta G^{0}}{R T}}=e^{\frac{-(-148.57 \mathrm{~kJ} / \mathrm{mol})}{(8.314 J / \mathrm{molK})(262 K)}\left(\frac{1000 J}{k J}\right)}=e^{+68.21}=4.2 \times 10^{29}
$$

2A. Carbonyl bromide, COBr_{2}, decomposes to CO and Br_{2} at $73^{\circ} \mathrm{C}$. If you begin with 0.10 moles of COBr_{2} in a 2.5 Liter flask and find that there are 0.015 moles of COBr_{2} at equilibrium, what are the concentrations of CO and Br_{2} at equilibrium? You must use the ICE method to solve this problem.

Initial	$\begin{gathered} \mathbf{C O B r}_{2} \mathbf{(g)} \\ (0.10 \mathrm{~mol} / 2.5 \mathrm{~L})=0.040 \mathrm{M} \end{gathered}$	<--->	$\underset{0}{\mathrm{CO}(\mathrm{~g})}+$	$\begin{gathered} \mathbf{B r}_{2}(\mathbf{g}) \\ 0 \end{gathered}$
Change	-X		+x	+x
Equilibrium	$0.040-\mathrm{x}=(0.015 \mathrm{~mol} / 2.5 \mathrm{~L})$		x	x

$$
\begin{gathered}
(0.015 \mathrm{~mol} / 2.5 \mathrm{~L})=0.0060 \mathrm{M}=0.040-\mathrm{x} \\
=0.0060 \mathrm{M}=\left[\mathrm{COBr}_{2}(\mathrm{~g})\right]_{\mathrm{eq}} \\
\mathrm{x}=0.040-0.0060 \mathrm{M}=0.034 \mathrm{M}=[\mathrm{CO}(\mathrm{~g})]_{\mathrm{eq}}=\left[\mathrm{Br}_{2}(\mathrm{~g})\right]_{\mathrm{eq}}
\end{gathered}
$$

5. What is the value of the equilibrium constant K_{c} at $73^{\circ} \mathrm{C}$?

$$
\mathrm{Kc}=\frac{[\mathrm{CO}(g)]\left[B r_{2}(g)\right]}{\left[\mathrm{COBr}_{2}\right]}=\frac{(0.034)(0.034)}{(0.0060)}=0.19
$$

Since Kc is between 10^{-3} and 10^{3}, will get significant concs of both reactants and products at equilibrium.
6. This reaction is

1. REACTANT FAVORED 2. PRODUCT FAVORED at equilibrium.

Question 4	Question 5
1. 0.0030 M	1. 0.18
2. 0.0060 M	2. $\mathbf{0 . 1 9}$
3. 0.040 M	3. 5.2
4. 0.085 M	4. 5.7
5. $\mathbf{0 . 0 3 4} \mathrm{M}$	
6. 0.068 M	

D. You would expect $\Delta \mathrm{G}^{0}$ to be

1. GREATER THAN ZERO
E. This is because $\quad \mathrm{K}<1$
F. Calculate $\Delta \mathrm{G}^{0}$ for this reaction.

$$
\Delta \mathrm{G}^{0}=-\mathrm{RT} \ln \mathrm{~K}=-(8.314 \mathrm{~J} / \mathrm{molK})(262 \mathrm{~K}) \ln (0.19)=+3,618 \mathrm{~J} / \mathrm{mol}=3.6 \mathrm{~kJ} / \mathrm{mol}
$$

G. Do you think ΔG^{0} will change sign at high temperature vs low temperature? 1. Yes 2. No Explain.

$$
\Delta \mathrm{G}^{0}=\Delta \mathrm{H}^{0}-\mathrm{T} \Delta \mathrm{~S}^{0}
$$

For this reaction $\Delta \mathrm{S}^{0}>0$ because there are more moles of product gas than reactant $\left(\Delta \mathrm{n}_{\mathrm{gas}}=2-1=1\right)$
Therefore as T increases expect that $\Delta \mathrm{G}^{0}$ will become negative.
H. Sketch a Gibbs Free Energy diagram v.s. Extent of reaction diagram for this reaction. (Label everything!) Show the region where $\mathrm{Q}<\mathrm{K}, \mathrm{Q}=\mathrm{K}$ and $\mathrm{Q}>\mathrm{K}$.

Extent of Rxn

