Chapter 9 - Lecture Worksheet 4

1. Summarize the ICE Method	
1.	
2.	
3.	
4.	
5.	
6.	
7.	

2. The equilibrium constant, K_c for the following reaction is 5.9 x 10⁻³ at 25^oC. Suppose 0.34 moles of $N_2O_4(g)$ are placed in a 1.00 L flask. What is the equilibrium concentration of $NO_2(g)$? You must use the ICE method to solve this problem.

 $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$

- **3.** The principle industrial source of hydrogen gas is from natural gas and water via a two step process:
- 1. Reforming Reaction: $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
- 2. Shift reactions: $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$

The equilibrium constant, K_p for the first reaction is 1.8 x 10⁻⁷ at 600 K. Suppose 1.40 atm of CH₄(g) and 2.30 atm of H₂O(g) are placed in a reaction chamber. What will the equilibrium partial pressure of H₂(g) be after the first reaction ?