Chapter 9- Lecture Worksheet 4

1. Summarize the ICE Method
2.
3.
4.
5.
6.
7.
8.
9. The equilibrium constant, K_{c} for the following reaction is 5.9×10^{-3} at $25^{\circ} \mathrm{C}$.

Suppose 0.34 moles of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ are placed in a 1.00 L flask. What is the equilibrium concentration of $\mathrm{NO}_{2}(\mathrm{~g})$? You must use the ICE method to solve this problem.

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

3. The principle industrial source of hydrogen gas is from natural gas and water via a two step process:
4. Reforming Reaction: $\mathrm{CH}_{4}(\mathrm{~g})+\mathbf{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathbf{C O}(\mathrm{g})+\mathbf{3} \mathrm{H}_{2}(\mathrm{~g})$
5. Shift reactions: $\quad \mathbf{C O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

The equilibrium constant, K_{p} for the first reaction is 1.8×10^{-7} at 600 K . Suppose 1.40 atm of $\mathrm{CH}_{4}(\mathrm{~g})$ and 2.30 atm of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are placed in a reaction chamber. What will the equilibrium partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ be after the first reaction ?

