The Equilibrium Constant

Depends upon:
 Balanced Chemical Equation
 Temperature

Independent of Initial concentrations, Volume, Pressure
For the general chemical equation:

$$
\mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

$$
\begin{aligned}
\mathbf{K}=\frac{\mathbf{a}_{\mathbf{C}}{ }^{\mathbf{c}} \mathbf{a}_{\mathbf{D}}{ }^{\mathbf{d}}}{\mathbf{a}_{\mathbf{A}}{ }^{\mathbf{a}} \mathbf{a}_{\mathbf{B}}{ }^{\mathbf{b}}} & =\frac{\mathbf{P}_{\text {products }}{ }^{\text {coef }}}{\mathbf{P}_{\text {reactants }}{ }^{\text {coef }}} \quad \text { for gases } \\
& =\frac{\text { [prods }^{\text {coef }}}{[\text { reacts }]^{\text {coef }}} \quad \text { for solutions }
\end{aligned}
$$

Where all are equilibrium concentrations.
Note: The activities of pure liquids and solids are equal to 1 . They are not written in the equilibrium constant expression.

Relationship between K_{p} and K_{c} for gases:

$$
\mathbf{K}_{\mathbf{p}}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathbf{n}_{\mathrm{gas}}}
$$

Manipulating K

1. Reverse reaction:	Take reciprocal of K	$K_{\text {new }}=\mathbf{1} / \mathbf{K}$
2. Multiply reaction by $\mathbf{n}:$	Raise K to power of n	$\mathbf{K}_{\text {new }}=(\mathbf{K})^{\mathbf{n}}$
3. Add reactions:	Multipy K^{\prime} 's	$\mathbf{K}_{\text {new }}=K_{1} \mathbf{K}_{2}$

