The Equilibrium Constant

Depends upon:

Balanced Chemical Equation Temperature

Independent of Initial concentrations, Volume, Pressure For the general chemical equation:

$$aA + bB \rightleftharpoons cC + dD$$

$$K = \frac{a_C^c a_D^d}{a_A^a a_B^b} = \frac{P_{products}^{coef}}{P_{reactants}^{coef}}$$
 for gases
$$= \frac{[prods]^{coef}}{[reacts]^{coef}}$$
 for solutions

Where all are *equilibrium* concentrations.

Note: The activities of pure liquids and solids are equal to 1. They are not written in the equilibrium constant expression.

Relationship between K_p and K_c for gases:

$$\mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}} \left(\mathbf{R} \mathbf{T} \right)^{\Delta \mathbf{n}_{\mathbf{gas}}}$$

Manipulating K

1. Reverse reaction:	Take reciprocal of K	$K_{new} = 1/K$
2. Multiply reaction by n:	Raise K to power of n	$\mathbf{K}_{\text{new}} = (\mathbf{K})^{\text{n}}$
3. Add reactions:	Multipy K's	$\mathbf{K}_{\text{new}} = \mathbf{K}_1 \mathbf{K}_2$