LeChatelier and Volume

When a system is at equilibrium, $\mathrm{Q}=\mathrm{K}$. Changing the volume occupied by a gaseous system at equilibrium will change the concentrations of reactant and product gases and will change the pressure. This MAY cause the reactant quotient, Q, to change. Volume changes for systems that have no gases have no effect on the equilibrium.

The equilibrium will shift to the side of the reaction with:
... fewer moles of gas if the volume is reduced, thus offsetting the increased pressure.
... more moles of gas if the volume is increased, thus offsetting the reduced pressure.
The equilibrium will remain unchanged if the number of moles of gas is the same on both sides of the reaction.

The difference between the number of moles of gaseous products and gaseous reactants will tell you how a system behaves when the volume is changed.
$\square \mathrm{n}_{\mathrm{gas}}=($ moles product gas - moles reactant gas $)$
If $\square \mathrm{n}_{\mathrm{gas}}<0$, fewer moles of product gases. Decrease V , the reaction runs forward to reduce the pressure.

If $\square \mathrm{n}_{\text {gas }}>0$, fewer moles of reactant gases. Decrease V , the reaction runs backward to reduce the pressure.

If $\square \mathrm{n}_{\mathrm{gas}}=0$, same number of moles of reactant and product gases. Changing V has no effect on the equilibrium.

