The principle industrial source of hydrogen gas is from natural gas and water via a two step process:

1. Reforming Reaction: $\mathbf{C H}_{4}(\mathrm{~g})+\mathbf{H}_{2} \mathbf{O}(\mathrm{~g})<----->\mathbf{C O}(\mathrm{g})+3 \mathbf{H}_{2}(\mathrm{~g})$
2. Shift reactions:
$\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})<-\cdots--->\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

The equilibrium constant, K_{p} for the first reaction is 1.8×10^{-7} at 600 K . Suppose 1.40 atm of $\mathrm{CH}_{4}(\mathrm{~g})$ and 2.30 atm of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are placed in a reaction chamber. What will the equilibrium partial pressure of $\mathrm{H}_{2}(\mathrm{~g})$ be at equilibrium after the first reaction ?

See Chapter 19, pp 675-6 for more information about this process

