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opportunities for the 21st century
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RNA can do everything

DNA

RNA

Protein

Archival information 
storage

Transient 
information storage

Catalysis, structure, 
regulation, et al.

Catalysis! 1980-2000



RNA - primordial molecule

DNA

mRNA

Protein

So we accepted that RNA was 
probably the first, primitive do-

everything biomolecule.

But proteins came along to 
supplant everything and make 

the world, evolutionarily, what it 
is today.  All hail the protein!
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Reality…

Exon Exon ExonIntronIntron

Junk Junk

and our perception of it

Genome project goals

Identify and characterize the proteins.
What are their structures?

What do they do?
How do they interact?
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20th Century View

Polymerases

Hydrogenases

Proteases

Kinases

Receptors

Oxygenases

Nucleic acids
Trash
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Exon Exon ExonIntronIntron

AUGCGGAGT…

MetXxxXxx…

DNA

mRNA

Protein

pre-mRNA

Alternative
Splicing

1980’s

Intron Intron

Junk Junk Junk Junk

Instructions and chemistry for alternative editing
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Back in the lab…
With the advent of PCR, nucleic acids have been 
recognized as extremely powerful combinatorial 

tools in the test tube

Aptamers can be selected that bind to 
“your favorite molecule”

Can create riboswitches

Ron Breaker:
“if it’s so easy for us, I’ll bet nature exploits this”
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More gene regulation

DNA

RNA 
polymeraseregulatory 

proteins

promoter
regulatory 
elements

mRNA

Protein

5’ untranslated 
region (5’-UTR)

Ron: search for genes with no known protein regulator 
and which have a highly conserved 5’ UTR

Does RNA from that conserved 5’ UTR bind the product 
or substrate of the encoded enzyme?

protein seq

protein seq

One week:  a Nature paper!
2004



Project Encode (2007)
(More) rewriting of textbooks

June 2007, published in Nature

Some regions of DNA far from protein-coding genes 
(extreme “junk?”) are nevertheless highly conserved

Most of both strands of the DNA is transcribed (far 
beyond that required for protein-coding genes)
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21st Century Opportunities

DNA

mRNA

Protein

pre-mRNA
Riboswitches

Riboswitches

RNA Editing
late ‘80s

Riboswitches
early ‘00s

Alternative 
splicing

early ‘80s, but…

micro RNA
late ‘90’s

RNAi
late ‘90’s

“so 20th century”

To be 
discovered…

2010



Large Macromolecular 
Complexes



Ribosome
An RNA machine with protein cofactors

http://people.chem.umass.edu/cmartin/Jmol/Ribosome/1kqs.html
http://people.chem.umass.edu/cmartin/Jmol/Ribosome/1kqs.html
http://people.chem.umass.edu/cmartin/Jmol/Ribosome/1kqs.html
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The DNA Duplex

What stabilizes the duplex?

What directs duplex structure?



Which is more stable?
(which has a higher melting temperature?)

ACCGCCACCGAAG
TGGCGGTGGCTTC

ACCGCCACCGAAG
TGGCGGTGGCTTA

or
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Which is more stable?
(which has a higher melting temperature?)

ACCGCCACCGAAG
TGGCGGTGGCTTC

ACCGCCACCGAAG
TGGCGGTGGCTTA

or

51.6° C

52.5° C

Calculations from http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/

http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
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How important are H-bonds in DNA?

37

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051


How important are H-bonds in DNA?

37
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How important are H-bonds in DNA?

37

+3.4

+3.7

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051


How important are H-bonds in DNA?

37

+3.4

+3.7
+3.4

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
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37

+3.4

+3.7
+3.4

+3.5

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051


How important are H-bonds in DNA?

37

+3.4

+3.7
+3.4

+3.5 +3.0

http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
http://pubs.acs.org/cgi-bin/archive.cgi/jacsat/1995/117/i07/pdf/ja00112a001.pdf?isMac=296051
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Burial of hydrophobic surface drives helix formation
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Burial of hydrophobic surface drives helix formation
(hydrophobic core / stacking interactions)
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Hoogsteen vindicated

A crystal structure from from July 2004 
shows that an error correcting (and 
error-prone) DNA polymerase uses 
Hoogsteen-WC base pairing to 
recognize the incoming substrate dNTP.

This supports biochemical studies that 
had been suggesting such a pairing.

This polymerase is good at bypassing 
lesions in the DNA (eg, damaged 
Watson-Crick face of G).



Hoogsteen vindicated

A crystal structure from from July 2004 
shows that an error correcting (and 
error-prone) DNA polymerase uses 
Hoogsteen-WC base pairing to 
recognize the incoming substrate dNTP.

This supports biochemical studies that 
had been suggesting such a pairing.

This polymerase is good at bypassing 
lesions in the DNA (eg, damaged 
Watson-Crick face of G).

But… perhaps not…
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B-form DNA

B-form

Residues per turn =10
Twist per base pair = 36°

Rise per pair = 3.4Å
c2’-endo

Minor groove width = 5.7Å
Major groove width = 11.7Å

Minor groove depth = 7.5Å
Major groove depth = 8.8Å

A-form

Residues per turn =11
Twist per base pair = 33°

Rise per pair = 2.9Å
c3’-endo

Minor groove width = 11Å
Major groove width = 2.7Å

Minor groove depth = 2.8Å
Major groove depth = 13.5Å

Major 
groove

Minor 
groove
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A-form RNA

Residues per turn =11
Twist per base pair = 33°

Rise per pair = 2.9Å
c3’-endo
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Major groove width = 2.7Å
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Major groove depth = 13.5Å
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Compare

Major 
groove

Minor 
groove

Major 
groove

Minor 
groove

B-form (DNA)

Minor groove width = 5.7Å
Major groove width = 11.7Å

Minor groove depth = 7.5Å
Major groove depth = 8.8Å

A-form (RNA)

Minor groove width = 11Å
Major groove width = 2.7Å

Minor groove depth = 2.8Å
Major groove depth = 13.5Å

C2’ 
endo

C2’ exo

C3’ 
endo

C3’ exo



Z-DNA

Major 
groove

Minor 
groove

Major 
groove

Minor 
groove

Residues per turn =12
Twist per base pair = -9 / -51°

Rise per pair = 3.7Å
c3’-endo(syn) / c2’-endo

Minor groove width = 2.0Å
Major groove width = 8.8Å

Minor groove depth = 13.8Å
Major groove depth = 3.7Å
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Nucleic Acid “Triples / Platforms”
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Winged Helix DNA Binding Domain
Classic helix-turn-helix
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Winged Helix DNA Binding Domain
Classic helix-turn-helix

Hrfx1 bound to its X-box binding site
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Simple Structure - Hairpin

http://www.chem.umass.edu/people/cmartin/Jmol/TelomeraseP61/index.html
http://www.chem.umass.edu/people/cmartin/Jmol/TelomeraseP61/index.html
http://www.chem.umass.edu/people/cmartin/Jmol/TelomeraseP61/index.html


Classic Structure - Pseudoknot

http://people.chem.umass.edu/cmartin/Jmol/Rbz/PseudoKnot/index.html
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Hammerhead Ribozyme
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AMP Aptamer
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Ribosome
An RNA machine with protein cofactors

http://people.chem.umass.edu/cmartin/Jmol/Ribosome/1kqs.html
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Ribosome - Secondary Structure
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Science 289(5481), 905 - 920, 2000
The Complete Atomic Structure of the Large Ribosomal Subunit at 2.4 Å Resolution

Ban, Nissen, Hansen, Moore, & Steitz

http://www.sciencemag.org/cgi/content/full/289/5481/905
http://www.sciencemag.org/cgi/content/full/289/5481/905
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Science 289(5481), 905 - 920, 2000

http://www.sciencemag.org/cgi/content/full/289/5481/905
http://www.sciencemag.org/cgi/content/full/289/5481/905
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PNAS 98(9), 4899-4903, 2001

The Ribosome: a wealth of RNA structure

RNA tertiary interactions in the large 
ribosomal subunit: The A-minor motif

Nissen, Ippolito, Ban, Moore, & Steitz

http://www.pnas.org/content/98/9/4899.long
http://www.pnas.org/content/98/9/4899.long
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PNAS 98(9), 4899-4903, 2001

http://www.pnas.org/content/98/9/4899.long
http://www.pnas.org/content/98/9/4899.long
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PNAS 98(9), 4899-4903, 2001

http://www.pnas.org/content/98/9/4899.long
http://www.pnas.org/content/98/9/4899.long
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PNAS 98(9), 4899-4903, 2001



Structural Motifs
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Tetraloop π-turn Ω-turn

S2-motif E-loop kink-turn

Nucleic Acids Research, 2009, Vol. 37, No. 4 e29

http://nar.oxfordjournals.org/cgi/content/full/37/4/e29
http://nar.oxfordjournals.org/cgi/content/full/37/4/e29


Where to from here?  Modular Construction
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Nucleic Acids Research 2009 37(9):e71

Xu and Shi, “Composite RNA aptamers 
as functional mimics of proteins”

http://nar.oxfordjournals.org/cgi/content/full/37/9/e71
http://nar.oxfordjournals.org/cgi/content/full/37/9/e71


Which is more stable?
(which has a higher melting temperature?)

ACCGCCACCGAAG
TGGCGGTGGCTTC

ACCGCCACCGAAG
TGGCGGTGGCTTA

or



Which is more stable?
(which has a higher melting temperature?)

ACCGCCACCGAAG
TGGCGGTGGCTTC

ACCGCCACCGAAG
TGGCGGTGGCTTA

or

51.6° C



Which is more stable?
(which has a higher melting temperature?)

ACCGCCACCGAAG
TGGCGGTGGCTTC

ACCGCCACCGAAG
TGGCGGTGGCTTA

or

51.6° C

52.5° C

Calculations from http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/

http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/
http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/

