Nucleic Acids
 Why do I care?

Proteins do everything, right?
revolutions at the turn of the century
opportunities for the 21 st century

In the beginning...

Archival information storage

Transient information storage

Catalysis, structure, regulation, et al.

Chicken \& Egg?

Archival information storage

Transient information storage

Catalysis, structure, regulation, et al.

RNA can do everything

Archival information storage

Transient information storage Catalysis!
1980-2000

Catalysis, structure, regulation, et al.

Project Encode (2007)
 (More) rewriting of textbooks

June 2007, published in Nature
Some regions of DNA far from protein-coding genes (extreme "junk?") are nevertheless highly conserved
Most of both strands of the DNA is transcribed (far beyond that required for protein-coding genes)

21 st Century Opportunities

DNA(RNA) Nanotechnology

 Folding DNA to create nanoscale shapes \& patternsPaul W. K. Rothemund Nature Vol 440116 March 2006Idoi:10.1038/nature04586

Start with long single stranded DNA (black line)

Then add a large number of carefully designed short, complementary oligos (staples) to "stitch" the DNA into a more compact (and welldefined) structure

DNA(RNA) Nanotechnology

Start with long single stranded DNA (black line)

Then add a large number of carefully designed short, complementary oligos (staples) to "stitch" the DNA into a more compact (and welldefined) structure

Pay careful attention to the DNA helical phasing

DNA(RNA) Nanotechnology
 D

DNA(RNA) Nanotechnology

$\mathrm{NANO}_{\text {terter }}$

Reconfigurable DNA Origami to Generate Quasifractal Patterns

Fei Zhang, ${ }^{\dagger}$ Jeanette Nangreave, ${ }^{\dagger}$ Yan Liu, ${ }^{*+}$ and Hao Yan* ${ }^{*}{ }^{\dagger}$
${ }^{\dagger}$ Department of Chemistry and Biochemistry and ${ }^{\dagger}$ The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United StatesSupporting Information

Abstract

The specificity of Watson-Crick base pairing, unique mechanical properties of DNA, and intrinsic stability of DNA double helices makes DNA an ideal material for the construction of dynamic nanodevices. Rationally designed strand displacement reactions can be used to produce dynamic reconfiguration of DNA nanostructures postassembly. Here we describe a 'fold-release-fold' strategy of multiple strand displacement and hybridization reactions to reconfigure a simple DNA origami structure into a complex, quasifractal pattern, demonstrating a complex transformation of DNA nanoarchitectures.

KEYWORDS: Dynamic DNA nanotechnology, strand displacement, reconfiguration, fractal

DNA(RNA) Nanotechnology
 LETTER

Left-handed helix Right-handed helix
 nanostructures with tailored optical response
Anton Kuzyk ${ }^{\text {² }}+$, Robert Schreiber ${ }^{2+}$, Zhiyuan Fan ${ }^{3}$, Günther Pardatscber', Eva-Maria Roller ${ }^{2}$, Alexander Högele ${ }^{2}$, Friedrich C. Simmel ${ }^{1}$, Alexander O. Govorov ${ }^{3}$ \& $\mathrm{Tim}^{\text {Liedl }}{ }^{2}$

Tuesday, November 6, 12

DNA(RNA) Nanotechnology

Molecular robots guided by prescriptive landscapes

Kyle Lund ${ }^{1,2}$, Anthony J. Manzo ${ }^{3}$, Nadine Dabby ${ }^{4}$, Nicole Michelotti ${ }^{35}$, Alexander Johnson-Buck ${ }^{3}$,
Jeanette Nangreave ${ }^{1,2}$, Steven Taylor ${ }^{6}$, Renjun Pei ${ }^{6}$, Milan N. Stojanovic ${ }^{6,7}$, Nils G. Walter ${ }^{3}$, Erik Winfree ${ }^{4,8,9}$ \& Hao Yan ${ }^{1,2}$

substrate track, turns and continues to a STOP site (red). d, Schematic of the

Figure 1 | Deoxyribozyme-based molecular walker and origami prescriptive landscape. a, The NICK3.4A ${ }_{3+1}$ spider consists of a

DNA origami landscape with positions A-E labelled; track EABD is shown

DNA(RNA)
 Nanobiotechnology

Ribosome
An RNA machine with protein cofactors

What stabilizes protein structures?

What directs protein structures?

The DNA Duplex

What stabilizes the duplex?

What directs duplex structure?

Which is most stable?

5'-ACCGCCGACGT-3'
3'-TGGCGGCTGCA-5'
5^{\prime}-ACCGCCGACGT-3'
3^{\prime}-AGGCGGCTGCC-5'

DNA

A look at the Chemistry

DNA
A look at the Chemistry

DNA
A look at the Chemistry

DNA
A look at the Chemistry

DNA
A look at the Chemistry

DNA

A look at the Chemistry

DNA
A look at the Chemistry

Tuesday, November 6, 12

What forces are important?

Base Pairing

(Donors matched to Acceptors)

Base Pairing

(Donors matched to Acceptors)

Major Groove

Minor Groove

Base Pairing

(Donors matched to Acceptors)

Base Pairing

(Donors matched to Acceptors)

A

Good base pairing Watson-Crick facing
but Anti-Watson-Crick orientation

Base Pairing
 (Donors matched to Acceptors)

T

A

Good base pairing WC-Hoogsteen facing

Bad Base Pairing

(Donors not matched to Acceptors)

Bad Base Pairing

(Donors to Acceptors with terrible angles)

Wild (but good) Base Pairing

AT Base Pair

Ten H-Bonds

Ten H-Bonds

Tuesday, November 6, 12

How important are H -bonds in DNA?

T-A

F•D

B - D $\quad+3.5$

B- B +3.0
J. Am. Chem. Soc., Vol. 117, No. 7, 19951867

Table 1. Free Erergies and Melting Tersperatares foe Dodecamer Deplexes Containing a Variable $\mathrm{T}-\mathrm{X}, \mathrm{F}-\mathrm{X}, \mathrm{B}-\mathrm{X}$, or $\mathrm{D}-\mathrm{X}$ Base Pair ($\mathrm{X}=\mathrm{A} . \mathrm{T}, \mathrm{C}, \mathrm{G}$)

duplex	$\mathrm{T}_{\mathrm{m}}\left({ }^{\circ} \mathrm{C}\right)^{*}$	$\mathrm{SH}^{\circ}{ }^{28}$ (real)
S-CTTTTCीITCTT s-gaAaAqBaAgaa	38.4	12.3
5-CTTTTCTTTCTT j-ghaiagcaagaa	28.4	8.7
S-CTTTTCTITTCTT g-gakaAdgaagaa	30.7	9.3
5-CTTTTCHTTCTT s-gamadgiahgaa	27.1	8.9
S-GTTTTCDT TCTT g-gakamqaAagaA	21.4	7.4
5-CTTTTGFTTCTT b-ganadgedabaa	25.0	4.2
5-CTTTTCRTTCTT j-ganadggaigaa	23.0	8.0
s-CTTTTCFTTCTT BGAAAAGUAAGAA	20.2	7.3
5-СТTTTCBIT TCTT SGAAAACAAAGAA	21.0	7.5
\& СTTTTC官TTCTT j-gakahachagaa	22.9	7.8
5-СTTTTCBTTCTT JGAAAAOGAAOAA	20.1	7.6
5CTTTTCETtTCTT j-gahaAqtahgat	20.3	6.7
5-cTTT TODT TCTT g-gaakadaAacaa	20.8	7.4
SCTTTTCDTTCTT rGAAAAGCAAGAA	22.2	7.6
5-CTTTTCDTTCTT j-gamakdgatgaa	19.7	7.4
SCTTTTCOTTCTT गQAAAACUAAGAA	17.6	6.9
${ }^{\circ}$ Conditioes: $100 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM} \mathrm{MgCl} .10 \mathrm{mM} \mathrm{Na}$ - PTPES, $\mathrm{H} 7.0,1.6 \mu \mathrm{M}$ each strand.		

Burial of hydrophobic surface drives helix formation (hydrophobic core / stacking interactions)

Flat faces are nonpolar
Edges are very polar (can H -bond)

Furanose Sugar Ring

Furanose Sugar Ring

 Puckered
Planar

Why is Watson-Crick so good?

All four WC base pairs are
isosteric

Why is Watson-Crick so good?

All four WC base pairs are isosteric

Why is Watson-Crick so good?

All four WC base pairs are
isosteric

Why is Watson-Crick so good?

All four WC base pairs are
isosteric

Why a helix?

Why major and minor grooves?

Nucleic Acid - Nucleic Acid Recognition

Why is the major groove so good?

Major Groove

Minor Groove

Why is the major groove so good?

Major Groove

Minor Groove

Why is the major groove so good?

Major Groove

C

Minor Groove

Why is the major groove so good?

Major Groove

G

Minor Groove

Nucleic Acid "Triples / Platforms"

Major Groove Interactions

Protein - Nucleic Acid Interactions

Gln
Asn
Arg

Major Groove Interactions

B-form DNA

B-form

Residues per turn =10
Twist per base pair $=36^{\circ}$
Rise per pair $=3.4 \AA$ c2'-endo

Minor groove width $=5.7 \AA$ Major groove width = 11.7Å

Minor groove depth $=7.5 \AA$ Major groove depth $=8.8 \AA$

B-form DNA

Residues per turn $=10$ Twist per base pair $=36^{\circ}$

Rise per pair $=3.4 \AA$ c2'-endo

Minor groove width $=5.7 \AA$ Major groove width $=11.7 \AA$

Minor groove depth $=7.5 \AA$ Major groove depth $=8.8 \AA$

A-form RNA

Residues per turn =11
Twist per base pair $=33^{\circ}$
Rise per pair $=2.9 \AA$ c3'-endo

Minor groove width $=11 \AA$ Major groove width $=2.7 \AA ̊$

Minor groove depth $=2.8 \AA$ Major groove depth $=13.5 \AA$

A-form RNA

Residues per turn =11 Twist per base pair $=33^{\circ}$

Rise per pair $=2.9 \AA$ c3'-endo

Minor groove width $=11 \AA$
Major groove width $=2.7 \AA$
Minor groove depth $=2.8 \AA$ Major groove depth $=13.5 \AA$

Compare

A-form (RNA)
Minor groove width $=11 \AA$
Major groove width $=2.7 \AA$
Minor groove depth $=2.8 \AA$
Major groove depth $=13.5 \AA$

B-form (DNA)
Minor groove width $=5.7 \AA$
Major groove width $=11.7 \AA \AA$
Minor groove depth $=7.5 \AA$
Major groove depth $=8.8 \AA$

Z-DNA

Residues per turn =12 Twist per base pair $=-9 /-51^{\circ}$

Rise per pair $=3.7 \AA$ c3'-endo(syn) / c2'-endo

Minor groove width $=2.0 \AA$ Major groove width $=8.8 \AA$

Minor groove depth $=13.8 \AA$ Major groove depth $=3.7 \AA ̊$

Ends of DNA duplexes

"Blunt" ends

Ends of DNA duplexes

"Blunt" ends

Simple Structure - Hairpin

(o)

Tuesday, November 6, 12

Classic Structure - Pseudoknot

(o)

Tuesday, November 6, 12
tRNA

Tuesday, November 6, 12

Hammerhead Ribozyme

(0) \hbar

AMP Aptamer

(O)

Tuesday, November 6, 12

AMP Aptamer

(o)

Tuesday, November 6, 12

Ribosome

An RNA machine with protein cofactors

Winged Helix DNA Binding Domain

Classic helix-turn-helix

(o)

Winged Helix DNA Binding Domain

Classic helix-turn-helix

(o)

Hrfx1 bound to its X -box binding site

