\qquad

Work independently. Do not look at others' exams. Do not allow your exam responses to be shared.

1. (30 points) Circle ALL correct answers, or fill in the blank, as appropriate. You may skip THREE of the sub-questions a-m. Write SKIP clearly in the left margin corresponding to your choice. If you do not, the first sub-question (a) will be skipped.

Element	Molecular weight $(\mathrm{g} / \mathrm{mol})$	Collisional diameter (\AA)
H (hydrogen)	1.00	2.5
I (iodine)	127	≈ 30

a) At 298 K and 1 atm , the root mean square velocity of I_{2} is (greater than / equal to / less than) that of H_{2}.
b) At 298 K and 1 atm, the number of collisions each I_{2} encounters per second is (greater than / equal to / less than) that of H_{2}.
c) At 298 K and 0.1 atm , the number of collisions each I_{2} encounters per second is (greater than / equal to / less than) that of H_{2}.
d) At 298 K and 1 atm , the translational kinetic energy of 1 mol of I_{2} is (greater than / equal to / less than) that of 1 mol of H_{2}.
e) At 298 K , the translational kinetic energy of 1 mol of H_{2} at 20 atm is (greater than / equal to / less than) that of 1 mol of H_{2} at 0.2 atm .
f) The sedimentation coefficient of a spheroidal particle is (greater than / equal to / less than) that of a particle with the same density and mass, but with a prolate (elongated) shape.
g) The units for a first order rate constant are $\left(\mathbf{s}^{-1} / \mathbf{M} \mathbf{s}^{-1} / \mathbf{M}^{-1} \mathbf{s}^{-1}\right)$.
h) Given the stoichiometry of a reaction, one (can / might be able to / cannot) deduce the rate law.
i) Given the rate law for a reaction, one (can / might be able to / cannot) deduce the stoichiometry.
j) The kinetics of a reaction are observed to be first order in A and first order in B. Select the mechanism(s) below which is/are consistent with this observation.

(a)	(b)	(c)	(d)	(e)
$A+B \longrightarrow C$	$\begin{aligned} & A \xrightarrow{\text { fast }} A^{*} \\ & A^{*}+B \xrightarrow{\text { slow }} C \end{aligned}$	$\begin{aligned} & B \xrightarrow{\text { fast }} B^{*} \\ & A+B^{*} \xrightarrow{\text { slow }} C \end{aligned}$	$\begin{aligned} & A \xrightarrow{\text { slow }} A^{*} \\ & A^{*}+B \xrightarrow{\text { fast }} C \end{aligned}$	$\begin{aligned} & B \xrightarrow{B \text { slow }} B^{*} \\ & A+B^{*} \xrightarrow{\text { fast }} C \end{aligned}$

\qquad
k) The Arrhenius pre-factor, A, is thought to represent:

The rate at zero temperature
The rate at zero pressure
The rate at infinite temperature
The rate at dilute concentrations of A

1) Describe briefly in words, from Eyring's transition state theory, WHY raising the temperature of a reaction increases the overall velocity of a reaction
m) Describe briefly in words, from Arrhenius/kinetic theory considerations, WHY raising the temperature of a reaction increases the overall velocity of a reaction
2. (10 points) Consider the reaction:

$$
A+B \underset{k_{\text {reverse }}}{\stackrel{k_{\text {fomanad }}}{\leftrightarrows}} C
$$

a) On the reaction diagram at right, indicate clearly with arrows

$$
\Delta G_{\text {forvard }}^{\ddagger} \quad \Delta G_{\text {reverse }}^{\ddagger} \quad \Delta G_{\text {reaction }}
$$

b) Label the transition state on the diagram.

3. (20 points) Consider the kinetic mechanism shown at right.
a) Place A, B, C, D, E, and F into the following categories:

Reactants:

Intermediates:

$A+E \underset{k_{-2}}{\stackrel{k_{2}}{\rightleftarrows}} A+B+C$
$B \xrightarrow{k_{3}} A+F$

Products:

Catalysts:

b) Complete the following

$$
\begin{aligned}
& \frac{d C}{d t}= \\
& \frac{d A}{d t}=
\end{aligned}
$$

4. Consider the reaction mechanism shown at right. In each case below, the reaction is started by addition of A to a total concentration of A_{0}, with no C or P initially present. The rate of the reaction is observed at early times (the concentration of P remains much
 less than that of A and C). This is not looking for the integrated rate equation, but rather at the initial rate, when only a small amount of P has formed.
a) (15 points) Assuming instead, that C reaches steady state (k_{2} is comparable to k_{-1}), express the initial velocity $\mathrm{dP} / \mathrm{dt}$ (at steady state) as a function of A_{o} and the rate constants.
b) (15 points) Assuming that fast equilibrium is established between A and C (k_{2} is much less than k_{-1}), express the initial velocity $\mathrm{dP} / \mathrm{dt}$ as a function of A_{o} and the rate constants.
c) (10 points) The equations derived above describe the kinetics of the reaction only within a certain time window. In the graphs below, plot qualitatively (you don't need a calculator) for each of (a) and (b) above, the concentrations of A, C, and P from time $\mathrm{t}=0$ up through some reasonable time (not until the end of the reaction). For part (b) include behavior before and including the steady state phase. An example is shown at right.

