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Chem 728 Lecture Notes
The following are lecture notes for Chem 728 (by C. Martin Fall 1995, with minor
modifications by L. Thompson). Much of the material is taken directly from the indicated
references (old vH, some refs updated to new). This is not intended to replace the original
references, but is made available solely for the convenience of students in the class.

Review of Thermodynamics
See van Holde, Chapter 2

As chemists we're in terested in molecules - the microscopic view... Thermodynamics takes a
macroscopic view of the behavior of large numbers of molecules (and thus it can take advantage of
statistical behavior) to deduce a great deal about a reaction without needing to know its microscopic
details. This understanding can then provide important insight into the molecular level. We'll see
how... >>example.

Definitions
Thermodynamics - describes distribution of energy within (states of) a system.
System - any subset of the universe having spatial boundaries

Transfer of matter between system and universe:
open      - transfer of matter allowed
closed      - transfer of matter not allowed

Transfer of heat between system and universe
non-adiabatic     - heat allowed (eg. eppendorf tube floating in a large water bath)
adiabatic     - insulated, no transfer of heat (eg. (approx) eppendorf tube placed in styrofoam insulation)

State of a system - defined only at equilibrium
Specified by two of (T,P,V) plus the masses and identities of all chemical species
Properties of states of the system

Extensive     - requires for their definition the full specification of the system including masses and
identities of components
examples - volume, energy, entropy - double the number of molecules, double the volume

Intensive     - only relative amounts of components need be known
examples - density, viscosity - double the number of molecules, no change in density

Changes between states
Reversible     - path from initial to final state proceeds through a succession of “near-equilibrium” states
Irreversible     - NOT above

State variables - path independent
This is quite important for calculations, particularly for complex processes: a simpler path connecting

the same 2 states can be used to calculate path-independent quantities (typically all but q and w).

Energetics
q - Heat    → energy supplied to the system as heat

energy     transferred into or out of a system as a consequence of a temperature difference between the
system and surroundings

heat absorbed by the system is positive
w - Work  → energy supplied to the system as work

any exchange of “non-heat”     energy     between the system and its surroundings.        Examples    :
volume change under constant pressure (P∆V)
changes in surface area under constant surface tension (2D analog of P∆V)
electrical work, etc.

work done on the system is positive - Beware: this convention is NOT universal! ie van Holde opposite
E or U - Internal Energy  (extensive state function)

The energy within the system. For our purposes, only energy which can be modified by chemical
processes (eg. we ignore nuclear energy).
examples - translational, vibrational, and rotational energy of the molecules, chemical bond
energy, nonbonding interactions (eg. dipolar, ionic)

Typically defined relative to a standard state. Only change in E is usually considered.
H - Enthalpy  (state function)
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H = E + PV    Enthalpy is the sum of the internal energy plus the product of the system volume times
the external pressure

The First Law - “Energy is conserved”
E = q + w        dE = dq + dw
“The change in the internal energy of a system is the total heat absorbed by the system
plus the total work done on the system by its surroundings”
Note that E is a state variable, but that q and w are not (some texts note this with
different symbol for dq, dw).
If only P∆V work is possible then  dw = -PdV

dE = dq + dw  = dq - PdV
Note: one must apply work to the system (dw > 0) in order to compress the system (dV<0)

For convenience, define enthalpy, H= (E + PV)
dH = d(E + PV) = dE + PdV + VdP = dq + dw + PdV + VdP
If only P∆V work is possible then dw = -PdV

dH = dq + VdP

Limiting conditions:
At constant volume: dE = dq (∆E = qv)
At constant pressure: dH = dq (∆H = qp)
Since most biological processes occur under constant pressure (1 atm), ∆H is the term of
choice to measure the energy of the system. However, since volume changes in most
biological processes are small, ∆H ≈ ∆E, so the distinction is minor.

 >> Review these ideas by following the reasoning of van Holde Fig 2.1

The Molecular View - Statistical thermodynamics
From our point of view, a system is really just a collection of molecules. It is the
individual actions and energies of the molecules that determine the properties of the
system. Why then, do we often ignore the individual players? The answer is that the
statistical behavior of very large numbers of well-behaved particles near equilibrium
can be very accurately predicted, even though the exact behavior of any single particle
cannot be predicted.

Intuitive example    :  consider two beakers containing a liquid and connected by a
tube with a closed stopcock in between. You can readily predict what will
happen when you open the stopcock. Fluid will flow (individual molecules will
move from one container to the other) until the liquid levels are equal. It
doesn’t matter whether the fluid is water, honey, or benzene, the final state
will be the same. Similarly, it doesn’t matter what diameter the connecting
tube is, or how long the connector is. Although the kinetics of approach to equilibrium may depend
on these parameters, the final state will not. In contrast, you cannot predict which individual
molecules will end up in which container (in fact the disposition of an individual molecule will vary
with time, even at equilibrium).

Thermodynamics is really concerned with how energy is distributed over a very large
number of particles. In a gas or a liquid, different particles can have different energies.
These energies are statistically distributed among the particles and the sum of their
individual energies is the total energy of the system.

Equilibrium is the most probable distribution of energies.
Using statistical mechanics it is possible to derive an equation
known as the Boltzmann equation, which relates the relative
(statistical) populations of non-degenerate states (“states” available
to the particles) to their energy levels. For two such states, i and j,
we have:
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This equation defines the most probable (ie. equilibrium) distribution for the
system.

The above assumed non-degenerate particle states. In other words, no two particle
states may have the same energy. Since we are dealing with simple statistical
distributions, if a given particle energy exists for two different particle states, then that
energy will be more often represented in the statistical distribution than an energy
represented by one state.
To include the general concept of degeneracy, the more
general form of the Boltzmann equation is written:

    

ni
n j

=
gi
g j

e
−

( i − j )
k BT

where each energy level, Ei, contains gi degenerate
states, and ni is the number of particles with energy Ei.
This explains the ratio of the populations of two energy
levels. To determine the population of one state relative to all possible states, we have

    

ni
N =

gie
−

( i − j )

kB T

gle
−

( l − j )

kBT

l
∑

   (N.B.: j is simply an arbitrary reference state for the calculation)

The above equation is known in statistical mechanics as the molecular partition
function. Remember well the basis that thermodynamics has in statistics.

Second Law of Thermodynamics
How do we know what direction a reaction will take? A reaction will go towards the
most probable state (overall distribution of energies) for the system. From statistics
again, we can look at the two distributions below for three degenerate energy levels and
predict which is more likely.

A: B:

There is only one way to distribute the particles to get state A. There are a lot more
ways of distributing particles to get state B (11!/(4! 4! 3!)=11,550). If A and B have equal
energies, B will occur much more often. Another way of saying this is that there is more
randomness in distribution B than in distribution A. Given this, we need to have a way
to express “randomness.”

From probability theory, we know that the number of ways of arranging N
distinguishable particles with n1 in one group, n2 in another group, etc. is

        
W =

N !
n1 !n2 !n3 !Knn !   where  N = n1 + n2 + n3 + … + nn

Define entropy:  S = k ln W   (an extensive property)

where k is the Boltzmann constant, kB (from here forward, we will drop the subscript
“B” except when it is necessary for clarity), and W is the number of ways in which the
individual particle states can be distributed within a particular energy level.
Note that S is extensive, such that for a system composed of two parts, 1 and 2, the total
entropy is given by:

      S = S1 + S2 = k ln W1 + k lnW 2 = k ln W1W 2( )
in other words, W = W1W2, which is expected from statistics: if the number of ways of
distributing particles in state 1 is W1 and the number of ways for part 2 is W2, then the
number of ways of distributing particles in the combined state is simply W1W2.
Similarly, we can ask about the change in entropy of a system initially characterized by
a distribution Wo going to a distribution Wf
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∆S = S f − So = k lnW f − k lnW o = k ln

W f
Wo

 

 
 

 

 
 

expanding our definition of entropy,

from 
        
W =

N !
n1 !n2 !n3 !Knn !    we expand            ln W = ln N !( ) − ln n1 !( ) − ln n2 !( ) − ln n3 !( )K− ln nn !( )

but note that for large n (Stirling’s approximation):     ln n !( ) ≈ n ln n( ) − n

  

ln W = (N ln N( ) − N) − n1 ln n1 − n1( ) − n2 ln n2 − n2( )K− nn ln nn − nn( )
ln W = N ln N − n1 ln n1 − n2 ln n2K−nn ln nn − N + n1 + n2K+nn

ln W = N ln N − n1 ln n1 − n2 ln n2K−nn ln nn

(remember that N = n1 + n2 + n3+ … + nn).   Finally we can summarize:

    
ln W = N ln N − ni lnn i

i
∑

Now let’s look at a change of the system in which we redistribute some particles to
different energy levels, and we’ll do it in infinitesimally small steps. From before,
S = k lnW, so that:

dS = kd lnW( ) = kd N ln N − ni ln ni
i

∑ 
 
  

 

= kd N ln N( ) − k d ni ln ni( )
i

∑

= 0 − k d ni( ) ln ni + nid ln ni( )[ ]
i

∑ = −k dni ln ni + ni

dni

ni

 

  
 

  
i

∑ = −k dni ln ni
i

∑ − k dni
i

∑
The summation in the last term represents the sum of all population changes in all
levels. Since the N particles are restricted to the levels 1 through n (ie., particles can
only redistribute among the levels), the sum of all changes is simply 0.
If this causes you trouble, imagine that if you move 5 particles from level 3 to level 6.
For this transfer dn3=-5 and dn6=+5. As for this example, the sum of all transfers is
simply 0.
Therefore  dS =− k ln ni

i
∑ dni

remembering the Boltzmann distribution, 
    

ni
n j

= e
−

( i − j )
k BT

    
lnn i = lnn j −

( i − j )

kBT = lnn j −
∆ i
kT

Placing this into the equation for dS above

dS =− k ln nj −
∆ i

kT
 
 

 
 

i
∑ dni = −k lnn j dni

i
∑ + k

∆ i

kTi
∑ dni

dS = 0 + k
∆ i

kTi
∑ dni = 1

T
∆ idni

i
∑

Let’s think again about the summation of ∆εi: we are talking about redistributing
particles between various levels. The summation totals the changes in energies,
weighted by the number of particles making each change. If more particles move to
higher energies than move to lower energies, the system must absorb heat (and vice
versa). Hence, the summation is simply the amount of heat absorbed by the system,
qrev.

dS =
1

T
∆ idni

i
∑ =

dqrev

T
       or     ∆S =

dqrev

T∫ =
qrev

T
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In general then, we can directly calculate S for a process if we can define qrev along a
reversible path from state A to state B. You will remember that since S is a state
function, we can exploit this result even if the actual path taken in an experiment is not
reversible. A simple example using the expansion of an ideal gas is given in van Holde
(pp. 80-81).
This is then expanded to include mixing two solutions. Our intuition says that the
entropy of the final mixture will be greater than the sum of the entropies of the two
pure components (each particle has more choices available to it).
Again intuition tells us that the melting of a crystalline solid or the unfolding of a
protein (but see important discussion below) will lead to an increase in entropy.

  
∆S =

qrev
T =

∆Hmelting
Tmelting

In general, heating of a sample will lead to an increase in entropy, and this can be seen
from the Boltzmann analysis above. Heating a sample must lead to increased
population of higher particle energy levels. This results in a larger distribution of
particle energies, and therefore to increased entropy.

Define heat capacity, Cp
The change in the internal heat of a system as a function of temperature (and at
constant pressure) can be expressed as:

qrev

T

 
 

 
 

P

= Cp

Remembering that dS =
dqrev

T

dS =
CpdT

T
         ∆S =

CpdT

T
T1

T2

∫
Assuming (and this is an assumption) that the heat capacity is not temperature
dependent over the temperature range from T1 to T2, then

∆S = Cp

dT

T
T1

T2

∫ = Cp ln
T2

T1

 
 
  

 
 

Re-examine “equilibrium”
From above we have   qrev = T S , and returning to our definition of E we have

    

dE = dq rev + dw

    = TdS − PdV
 at constant pressure.

For a reversible process at equilibrium, the internal energy E and the system volume V
are constant, so that dS must be zero. If we reversibly perturb the system in an
infinitesimally small manner, dS around equilibrium is zero. This means that S must be
in a local maximum or local minimum.
From our previous statements about most probable states, we conclude that an isolated
system (E and V constant), will be at equilibrium only when the entropy is maximum
(minimum entropy would correspond to few ways of arranging the particles).
Finally state the Second Law: An isolated system will approach a state of maximum
randomness - directionality.

A more relevant term for biological systems - G  (constant T & P)
We rarely encounter isolated systems at constant volume. Instead most of life’s
processes occur under constant temperature (eg. physiological 37°C or room
temperature ≈25°C) and constant pressure (1 atm). We introduce the Gibbs free energy,
as a function of T and P
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G = H − TS
H = E + PV
∴  dG = dH − d TS( ) = dE + VdP + PdV − SdT − TdS

for a reversible process   dE = TdS − PdV , so that
  dGrev = VdP − SdT

If we consider equilibrium at constant temperature and pressure, then     dG = 0

Just as entropy reaches a maximum at equilibrium, G reaches a minimum.
Also note the more familiar expression at constant temperature  ∆G = ∆H − T∆S

Back to Boltzmann
i

j
Consider two energy levels, i and j,

From before we had 
    

ni
n j

=
gi
g j

e
−

( i − j )
k BT

But gi is the degeneracy, or number of ways of attaining energy εi, which is Wi

    

ni
n j

=
W i
W j

e
−

( i − j )
kT = e

ln
Wi
W j

 

 
  

 

 
  
e

− ∆
kT = e

lnW i −lnW j − ∆
kT = e

kT lnW i −kT lnW j −∆
kT

 

 
  

 

 
  

If we move from particle energy (∆ε) to a molar energy (∆E), also replacing k by R, and then
approximate ∆E ≈ ∆H, we have

  

ni
n j

= e

TSi −TS j −∆H
RT

 

 
  

 

 
  

= e
− ∆H −T∆S

RT

 
 
 

 
 
 

= e
− ∆G

RT

You will of course notice that the left side is just the equilibrium constant for a reaction
going from state j to state i. This then leads us to a familiar expression

      

ni
n j

= K = e
− ∆G

RT      or       ln K = −
∆G
RT

Aside:  The text (van Holde) first talks about the unfolding of a protein as necessarily
having an associated increase in entropy, as a result of the increased motional freedom
of the polypeptide and the side chains. This is what most people would come to, looking
at the protein as an isolated system. At the end of the chapter, van Holde discusses the
real situation - protein unfolding may actually have an unfavorable entropic component.
Why? The answer is that it is unrealistic to treat an isolated protein as a system unto
itself. In fact, in solution a protein is interacting substantially with the solvent (water)
and components of the solvent. Indeed, it is these interactions which lead to stable
folding of proteins. When we draw the line for our system, we must include these
interactions.
A charged or polar group on the surface of a protein will “want to” interact with a
charge or polar group in solution. Even if a direct interaction with a salt ion is formed,
water will ultimately be involved in forming interactions with the polar group(s). Hence,
the exposure of a charged or polar group on the surface of the protein serves to orient
(restrict the motion of) water molecules - reducing their entropy. Of course, water
molecules will also interact with themselves, but the interactions are transient and
more varied (large entropy). Even more so, exposure of a nonpolar group to solvent
forces a preferred orientation on associated solvent molecules (water) reducing the
entropy of the system.
When a protein folds up, many of these interactions are satisfied internally (a polar side
chain might interact with a backbone carbonyl). As before the entropy associated with
each group decreases, but it was already low since the two portions of the molecule are
ultimately covalently linked. Since this decrease in entropy is less than the entropy loss
associated with solvent caging, the total entropy (disorder) of the system can actually be
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higher in the system containing a folded protein. We will discuss this concept at greater
length in future lectures.
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Brief Aside:
Introduction to MathCAD

When you first run MathCAD you will be placed onto an empty document.
You can simply click anywhere with the mouse to type an equation.
To define a variable, use :=

eg.   a:=3.0     YVal:=a/5 (this will then convert to a more familiar form)
Note that expressions on a page are evaluated left to right and top to bottom, so that
the second expression above must be located to the right of or below the left expression,
otherwise “a” will be undefined.
To check the value of a variable, use =

eg.   after the above, type   YVal=       the screen will respond with   YVal = 0.6
Any time that the “insertion point” is in a variable, typing will do as you expect.
When you want to “operate on” a variable, you often have to “back up” and select the
whole variable first. To do this type either the “space bar” or the “up arrow key” while
the insert point is anywhere in the name of that variable (you may have to click to get it
there). You will see the single selection mark change to a rectangle surrounding the
variable.
If you type “space bar” or “up arrow key” more than once, more variables will be
enclosed in your rectangle for selection.
To delete a selection, you must type “Command-X” (or choose “Cut” from the edit menu).
For some strange reason, the “delete key” will not delete.

Error Analysis
For an observable f(x,y,z) which is a function of variables x, y, and z, each with inherent
error ∆x, ∆y, and ∆z, respectively

      
∆f (x ,y , z ) = f (x , y , z )

x
 
 
  

 
 

2

∆x 2 + f (x , y , z )
y

 
 
  

 
 

2

∆y2 + f (x ,y , z )
z

 
 
  

 
 

2

∆z2

L’Hopital’s Rule
What to do in the limit as a function goes to either 0/0 or ±∞/±∞.

Put simply:   

        

lim
x → c

f (x )
g (x )  →   ∞

∞   or 0
0[ ]  →   lim

x → c

f (x )
x

g(x )
x

Dimensional Analysis
When doing derivations, it is very easy to drop a term or part of a term. An easy way to
find such errors is to remember that most, if not all, parameters in a function have
units. Consequently, it doesn’t make sense to add an expression in units of
concentration to an expression in units of concentration per time. So at the end of a
derivation, make sure that in any sum or difference expression, all additive terms have
the same units. If they don’t, then you can be certain that you made an error. To find
the error, repeat the dimensional analysis on each preceding expression in your
derivation.
An obvious corrollary of this is to always make sure that the final result has the correct
units. If you’re solving for velocity, and the expression you end up with doesn’t have
time in the denominator, then you are in trouble.
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Solution thermodynamics
Definition: Solution - a single phase system containing more than one independently
variable substance (component). At equilibrium, the solution can be described
completely by specification of the components and knowledge of their interactions.
Extensive and intensive variables depend on the composition.
Definition: Partial molar/specific quantities - for any extensive property X, the
corresponding partial molar quantity is

    

X i = X
n i

 
 
  

 
 

T ,P ,n j≠ i

In other words, it is the differential change in the extensive property X associated with
the differential change in the molar amount of species i, holding all else constant. It
may very well be a function of the other parameters (T,P, the amounts and identities of
other components).
Partial specific quantities are the same, but are with respect to the differential change
in mass of the component.
As an example, if you add volume x of a solute to volume y of a solution, the resulting
volume is not necessarily x+y. The volume change is governed by the partial specific
volume of the solute in that solution.
Note that the observable, the total extensive quantity, is sum of the products of all
partial specific quantities multiplied by the number of moles of each:

X = ni X i

i =1

n

∑       or      dX = X i

i =1

n

∑ dni

One extensive property that deserves expansion is the free energy,   Gi , the partial molar
free energy (also known as the chemical potential, µi.

      

Gi = µi = G
n i

 
 
  

 
 

T ,P ,n j ≠i

                 G = n iµi
i=1

n

∑

Just as we can look at the dependence of an extensive variable on the molar amount of a
species, we can also look at its dependence on other solution parameters. In general:

dG =
G

T

 
 

 
 

P ,n i

dT
 

  
 

  +
G

P

 
 

 
 

T, ni

dP
 

  
 

  +
G

ni

 
 
  

 
 

T ,P ,n j≠i

dni

 

 
 

 

 
 

i =1

n

∑
from before we had: dG = −SdT + VdP
which is now more generally:

dG = −SdT + VdP +
G

ni

 
 
  

 
 

T ,P ,n j≠i

dni

 

 
 

 

 
 

i =1

n

∑ = −SdT + VdP + µ idni
i =1

n

∑

Since we often restrict ourselves to constant T and P, then dG = µidni
i =1

n

∑
An important result of this can be seen, backing up to the more general  

    
G = n iµi

i =1

n

∑

we have dG = nidµ i
i =1

n

∑ + µidni
i =1

n

∑

but since at constant temperature and pressuredG = µidni
i =1

n

∑ then nidµi
i =1

n

∑ = 0

The simple result of this is that for an n-component system, µi for only n-1 components
are independent (Gibbs-Duhem).
Also, the differential free energy of a solute in a system of two phases (1 and 2) at
equilibrium and at constant T and P is
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dG = µidni
i =1

2

∑ = µ1dn1 +µ 2dn2 = 0

If we transfer a small amount of the solute from phase 1 to phase 2, dn1 =− dn2 , so that
−µ1dn2 +µ 2dn2 = 0        ∴      µ1 = µ2

In other words, for a solute at equilibrium between two phases, the chemical potential
for that species must be the same in both phases.
Since µi is related to concentration, ci, this will lead to rules for equilibria.

Ideal Solutions
An ideal solution is one in which all components obey Raoult’s law, relating vapor
pressure to mole fraction, Xi.
Alternatively viewed, an ideal solution is one for which the enthalpy of mixing is 0 and
the only source of energy change is due to changes in the entropy of mixing. It implies a
lack of interactions between solutes, in exactly the same way that the ideal gas law
ignores molecule-molecule interactions.

From above, we had 
  
S = k lnW = k ln

N0 !

N1 !N2 !KNn !
Using Stirling’s approximation as before,

      
∆Smixing = −k N i ln

N i
N0i =1

n

∑ = −k N i ln X i
i=1

n

∑  where 
    
X i =

N i
N0

Therefore 
      

∆Smixing = − R ni ln X i

i =1

n

∑

      
∆Gmixing = ∆Hmixing − T∆Smixing = 0 − T∆Smixing = RT ni ln X i

i =1

n

∑

but 
    
G = n iµi

i =1

n

∑

If we define 
      

∆Gmixing = Gso ln − Gi
pure

i =1

n

∑ = ni µi

i =1

n

∑ − n i µi
0

i =1

n

∑ = ni µi − µi
0( )

i =1

n

∑
Combining ∆Gmixing from the two approaches

      
∆Gmixing = n i µi − µi

0( )
i =1

n

∑ = RT n i ln X i
i=1

n

∑
therefore

      µi − µi
0 = RT ln X i

van Holde then discusses that for dilute solutions, Xi≈Ci, so that for most purposes:

      µi = µi
0 + RT lnCi

For a reaction:    aA + bB <--> cC + dD

  
∆G = G final − Ginitial    but     

G = n iµi
i =1

n

∑

  ∆G = cµC + dµ D − aµA − bµB

      ∆G = cµC
o + cRT ln CC( ) + dµ D

o + dRT lnCD( ) − aµA
o + aRT lnCA( ) − bµ B

0 + bRT lnCB( )
      ∆G = cµC

o + dµ D
o − aµ A

o − bµ B
0( ) + cRT lnCC + dRT lnCD − aRT lnCA − bRT lnCB( )

    
∆G = ∆G o + RT ln

CC
cCD

d

CA
aCB

b
     a classic!

At equilibrium  ∆G=0, so

    
∆Go = − RT ln

CC
c CD

d

CA
aCB

b = − RT ln Keq
    another classic!
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Also  
    
∆Go = ∆Ho − T∆So = −RT ln Keq   so  

    
ln Keq = −∆H o

RT + ∆S o

R

If ∆Ho and ∆So are independent of temperature (often NOT for protein interactions, but
often is OK over a narrow temperature range), then the temperature dependence of Keq

can yield ∆Ho and ∆So.

van’t Hoff equations
In calorimetry, one can directly measure heats associated with certain types of
reactions.
Let’s continue to look at the temperature dependence of some thermodynamic
parameters.

Starting with the expression:  
    
ln Keq = −∆H o

RT + ∆S o

R

We can derive the differential expression:  
ln Keq

1 T( )
 
 
  

 
 

P

=
−∆H o

R

or alternatively, 
ln Keq

T

 
 
  

 
P

=
∆H o

RT2

These are various forms of the van’t Hoff relation.
We can also predict the temperature dependence of the equilibrium constant over a
finite change in temperature:

    
ln KT i

=
−∆GT i

o

RT i
  leads to 

      
ln KT 2

− ln KT1
=

−∆GT 2

o

RT2
−

−∆GT1

o

RT1

or 
      
ln KT 2

= ln KT1
+

−∆GT 2

o

RT2
−

−∆GT1

o

RT1

We can also express this in terms of ∆H and ∆S

      
ln KT 2

= ln KT1
+

− ∆HT 2

o − T 2∆ST 2

o( )
RT 2

−
− ∆HT1

o − T1∆ST1

o( )
RT1

      
ln KT 2

= ln KT1
+

−∆HT 2

o + T 2∆ST 2

o( )
RT 2

+
∆HT1

o − T1∆ST 1

o( )
RT1

      
ln KT 2

= ln KT1
+

∆HT 1

o

RT1
−

∆HT 2

o

RT 2
+

∆ST 2

o − ∆ST1

o

R

If we are trying to expand this over a temperature range which is narrow enough that
we can assume ∆H and ∆S are temperature independent, then we can simplify this to:

      
ln KT 2

= ln KT1
+

∆HT
o

R
1
T1

− 1
T2

 
 
  

 
 = ln KT 1

+
∆HT

o

R
T 2 − T1
T1T 2

 
 
  

 
 

If ∆H<0 (exothermic reaction) then increasing temperature lowers K, pushing the
reaction towards reactants. This is precisely what your intuition should tell you (think
Le Chatelier). The opposite is true for endothermic reactions.
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Alternatively, we can come up with a more general expression. Remembering our
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yields
G T( )
T

 
 
  

 
P

=
1

T

H

T

 
 

 
 

P

−
1

T 2 H −
S

T

 
 

 
 

P

Finally, remember that at equilibrium     ∆Cp
o =

∆H o

T

 
 
  

 
p

= T
∆So

T

 
 
  

 
p

∆Go

T

 
 
  

 
T

=
1

T
∆Cp

o −
∆H o

T 2 −
1

T
∆Cp

o

∆Go

T( )
T

 

 
  

 

 
  

p

=
−∆Ho

T 2    (Gibbs-Helmholtz equation)

The integrated form of this expression is:

    

G
T( )

T1

T 2

∫ = − H
T 2 T

T1

T 2

∫

    

∆GT 2

T2
−

∆GT1

T1
= −

∆HT

T 2 T
T 1

T 2∫
Now, if ∆H is independent of temperature, this will eventually lead to the expression
above for the temperature dependence of ln(K) - try it!
For the unfolding of a protein, we can assume a simple “two-state” model (in other
words, the protein is either completely folded or “completely” unfolded, but
intermediates do not accumulate significantly). You might think that this is an
unreasonable assumption, however the folding of a protein is a highly cooperative
process, and one that is often poised on the edge of stability, such that quite often we
can safely make this assumption.
The following represent thermodynamic data for the unfolding of ribonuclease at 30°C.
  In other words, for the reaction:  F <--> U
Note the large ∆Cpo.

pH ∆Go

(kcal/mole)
∆Ho

(kcal/mole)
T∆So

(kcal/mole)
∆So

(cal deg-1 mole-1)
∆Cpo

(cal deg-1 mole-1)
1.1

3
-1.09 60.3 61.2 202 2072

2.5
0

0.91 57.2 56.3 186 1985

3.1
5

3.09 53.0 50.0 165 1987

Note the large ∆Cpo. For comparison, heat capacities for pure liquids are:
water: 18 cal deg-1 mole-1 benzene: 32 cal deg-1 mole-1

Note that the protein is unstable at pH=1.13, but becomes stable at pH=2.50. Note also
that ∆Ho and ∆So are large relative to ∆Go. The large ∆Cpo indicates that ∆Ho and ∆So

will show a strong temperature dependence.
The following data represent thermodynamic parameters for the unfolding of a number
of different proteins. Again, note the large ∆Cpo.

Protein ∆Go

(kcal/mole)
∆Ho

(kcal/mole)
T∆So

(kcal/mole)
∆So

(cal deg-1 mole-1)
∆Cpo

(cal deg-1 mole-1)

Tmax stabil
(°C)

Ribonuclease
(pH 2.5, 30°C)

0.9 57 56.1 185 2000 -9

Chymotrypsin
(pH 3, 25°C)

7.3 39 31.3 105 2600 10
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Myoglobin
(pH 9, 25°C)

13.6 42 28 95 1400 <0

β-lactoglobulin
(5 M urea,

pH 3, 25°C)

0.6 -21 -21.6 -72 2150 35
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Ligand Binding and Related Equilibria
The simplest ligand binding reaction can be written:   P + L ↔ PL  with  

    
K = [ PL ]

[P ][L ]

      
v = #  moles ligand bound

#  moles protein = [LB ]
[P ] + [PL ] = [LB ]

[PT ]       = [PL ]
[P ] + [PL ]

For the simple case described above, it will range from 0 to 1.

  Methods of measurement
Equilibrium Dialysis:

For the binding of a small molecule (ligand, L) to a large
macromolecule (protein, P), we can often measure binding via a
technique called equilibrium dialysis. The requirements are:

1) a semiporous dialysis membrane to which L is freely permeable and P
is not

2) a method for detecting [Lout] and/or [Lin] - a radioactive tag on L is
most commonly used.

Perturbation of Ligand or Protein
Alternatively, if we can measure a perturbation which occurs on binding, we can readily
measure the fraction saturation 

  
= v 

n = ∆Obs
∆ObsT

This measurement assumes    v  is linear in Obs and is the same for different binding
sites. Note that for n=1,   v =θ.

  Theoretical Treatment
Single Site per Macromolecule (n=1)

P + L ↔ PL     
      
Ka = [PL ]

[P ][L ]       Kd = [P ][L ]
[PL ] = 1

Ka

The equilibrium can be expressed either as an association (Ka) or a dissociation (Kd).

      

v = [PL ]
[P ] + [PL ]

= 1
[P ]

[PL ]( ) + 1
= 1

[P ]
Ka [P ][L ]( ) + 1

v = Ka [L ]
1 + Ka [L ]

= [L ]
1

Ka
+ [L ]

= [L ]
Kd + [L ]

Always check the behavior of your equation at simple, extreme limits:
Various results:  as [L]→∞,   v →1 (makes sense)

also when   v =0.5, [L]=1/Ka=Kd.

Rearrange to linear function (but watch for distortion of error)

      

v =
Ka [L ]

1 + Ka [L ]
= [L ]

1
Ka

 
 
  

 
 + [L ]

     then     1
Ka

 
 
  

 
 + [ L ] = [L ]

v 

1
[L ]Ka

 
 
  

 
 = 1

v 
− 1 = 1 − v 

v 
           and      v 

[L ]
= Ka 1 − v ( )

The last form of the equation is known as a Scatchard Plot.

Alternatively, 
      

1
[L ]Ka

 
 
  

 
 = 1 − v 

v       leads to        v 
1 − v = [ L ]Ka

Multiple Binding Sites
If we assume, more than one ligand binding site per protein, we have the more general
form:

      
v =

[LB ]
[ P ] + [PL ] =

[LB ]
[PT ]       =

[ PL ] + 2[PL2 ]+. . . +n[ PLn ]
[ P ] + [ PL ] + [PL2 ]+ . . . +[PLn ]

[P]

[PL]
[Lin]

[Lout]
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It should be obvious that as we approach saturation in this case, all protein is pushed to
the [PLn] limit, and this ratio should approach n, the total number of binding sites per
protein.
In equilibrium dialysis, if we know the concentration of protein and can measure the
total concentration of ligand inside the bag (radioactive labeling is frequently
employed), then we can measure this parameter.
P + nL ↔ PLn multiple sites, could be same or different, independent or cooperative.

Digression - Microscopic vs. Macroscopic
Examine the titration of glycine:

+H3NCH2COOH  +H3NCH2COO- + H+ k1
+H3NCH2COOH  H2NCH2COOH  + H+ k2

+H3NCH2COO-   H2NCH2COO- + H+ k3

H2NCH2COOH  H2NCH2COO- + H+ k4
The reactions above represent microscopic equilibria (hence the lower case k).
More commonly we would measure the macroscopic equilibria:

G-H2+  G-H + H+ K1

G-H  G- + H+ K2
where

G-H2
+ = +H3NCH2COOH

GH = +H3NCH2COO-  + H2NCH2COOH

G- = H2NCH2COO-

then

    

K1 = k1 + k2     and     K2 = 1
1

k3
+ 1

k4

 
 
  

 
 

    (try it!)

Note also that all four microscopic constants k1, k2, k3, and k4 are not independent.

Ligand Binding - Identical Independent Sites
In general, one can arrange i ligands on n identical sites  

    
Ωn ,i = n !

n − i( ) !i !
 ways

As an example, let’s consider four independent sites (n=4)

Mo = 
      
Ωn ,i = 4!

4 !0! = 1

Mo + L  M1 M1 = 
      
Ωn ,i = 4!

3!1! = 4

M1 + L  M2 M2= 
      
Ωn ,i = 4 !

2!2 ! = 6

M2 + L  M3 M3 = 
      
Ωn ,i = 4!

1!3 ! = 4

M3 + L  M4 M4 = 
      
Ωn ,i = 4!

0! 4! = 1

As before, we want to calculate the macroscopic parameter

      
v =

[LB ]
[ P ] + [PL ] =

[LB ]
[PT ]       =

[ PL ] + 2[PL2 ]+. . . +n[ PLn ]
[ P ] + [ PL ] + [PL2 ]+ . . . +[PLn ]

more generally

      

v =
iMi

i=0

n

∑

Mi
i=0

n

∑
          =

i [PLi ]
i =0

n

∑

[PLi ]
i =0

n

∑

 

 

 
 
 
 

 

 

 
 
 
 

We have the macroscopic equilibrium constants:  
      
K i =

[M i ]
[ Mi −1 ][L ]
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or         [Mi ] = Ki [L ][Mi −1 ]
Since these are identical sites, ki = kj, however, Ki ≠ Kj

You can show that 

      

[Mi ] = [L ]i [M o ] K j
j=1

i

∏    (try it, solve for M1, then for M2, etc.)

It can be shown that Ki =
Ωn ,i

Ωn, i −1

k   (in above example, Ωn, i  is the number of microstates)

as an aside, in example above K1=4k, K2=(6/4)K, K3=(4/6)k, K4=(1/4)k
This says that equilibrium favors adding a ligand to a fully unbound form is more favorable than
adding ligand to a partially bound form. Does this make qualitative sense from your understanding
so far?

then Ki =
Ωn ,i

Ωn, i −1

k =
(n − i + 1)!(i − 1)!

n!

n!

(n − i)!i!
k =

(n − i + 1)

i
k

So that [Mi ] = [L]i[Mo]
(n − j + 1)

j

 
 
  

 
k

j =1

i

∏

and finally [Mi ] =
(n − j +1)

j

 
 
  

 j =1

i

∏
 

  
 

  k[L]( )i
[Mo ]

which simplifies somewhat to  [Mi ] =
n!

(n − i)!i!

 
  

 
  k[L]( )i

[Mo ]

Returning to the macroscopic observable:

v =
iMi

i = 0

n

∑
Mi

i = 0

n

∑
=

i
n!

(n − i)!i!

 
  

 
  k[L]( )i

[Mo ]
 
 
 

 
 
 i = 0

n

∑
n!

(n − i)!i!

 
  

 
  k[L]( )i[Mo ]

 
 
 

 
 
 i = 0

n

∑
=

[Mo ] i
n!

(n − i)!i!

 
  

 
  k[L]( ) i 

 
 

 
 
 i = 0

n

∑

[Mo ]
n!

(n − i)!i!

 
  

 
  k[L]( )i 

 
 

 
 
 i = 0

n

∑

  =
0 + i

n!

(n − i)!i!

 
  

 
  k[L]( )i 

 
 

 
 
 i =1

n

∑

1 + n!
(n − i)!i!

 
  

 
  k[L]( )i 

 
 

 
 
 i=1

n

∑
However, the denominator is a binomial expansion:

1 +
n!

(n − i)!i!

 
  

 
  k[L]( )i 

 
 

 
 
 i=1

n

∑ = 1 + k[L]( )n

   eg. for n=4 above, 1 +
4!

(4 − i)!i!

 
  

 
  k[L]( )i 

 
 

 
 
 i=1

4

∑ = 1 + 4kL + 6k2 L2 + 4k3L3 + k4L4 = 1 + k[L]( )4

save this, we’ll need it.  But in the meantime, take it and

differentiate both sides with 
    k [L ]( ) i

n!

(n − i)!i!

 
  

 
  k[L]( )i − 1 

 
 

 
 
 i =1

n

∑ = n 1 + k[L]( )n−1

then multiply both sides by k[L]

      

i n !
(n − i )! i !

 
  

 
  k [L ]( )i  

 
  
 

i =1

n

∑ = nk[ L ] 1 + k [L ]( )n−1

Combining the above two results,

      

v =
nk [L ] 1 + k [L ]( )n −1

1 + k [ L ]( )n
= nk[ L ]

1 + k [L ]

Compare:
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Before for a single site:  
      
v =

Ka [L ]
1 + Ka [L ] , which led to 

      
v 

[L ] = Ka 1 − v ( )  and 
      

v 
1 − v = [L ]Ka

Before, as [L]→∞,   v →1  (single site)
Now, as [L]→∞,   v →n    (n multiple sites)
Both of these results should be completely and simply obvious. At complete binding, the number of

ligands bound per protein is simply the number of ligand binding sites per protein.

Now, similarly for multiple, independent  sites we have   
    
v 

[L ] = k n − v ( )
Ligand Binding - Multiple (Different) Classes of Independent Sites

If a protein has multiple class of sites in which sites within a given class are identical and
independent, but there is more than one such class of sites, then for m different classes of sites, in
which each class is composed of ni identical sites with association constant ki:

v =
niki[L]

1 + k i[L]i =1

m

∑      or     

      

v 
[L ] = niki

1 + ki [L ]
i =1

m

∑   (Scatchard)

Notice that if we plot 
    
v 

[L ]  vs. v , then the intercept (v =0 at [L]=0) corresponds to 
      

v 
[L ] = n iki

i =1

n

∑

Similarly, the x-intercept (
      
v 

[L ] = 0 ) corresponds to     v = n1 + n2  (extra credit for the first to derive it!).

0.0
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0.0 1.0 2.0 3.0 4.0 5.0 6.0

n1+n2
y = 20 + -5x

y = 40 + -20x
K=20
n=2

K=5
n=4

n1=2,    K1=20

n2=4,   K2=5

n1k1+n2k2

n1k1

n2

tighter
binding

weaker
binding

ν/L

ν
Ligand Binding - Multiple Identical but Interdependent Sites

If we assume a protein (or other macromolecule) with multiple ligand binding sites, for which binding
of each ligand alters the energetics of binding of the subsequent ligand.

If the inherent (independent) binding constant is ko, and we can express the change in free energy
associated with increasing fractional binding as RTφ(ν),

then      ∆Go = ∆Go
o + RT     where    ∆G o

o = -RTlnk o

and then      k ( ) = e
−∆Go

RT = e
− ∆Go

o +RT( )
RT = e

−∆Go
o

RT e − = koe−

Stop and analyze:
As ligand binds, if:

∆φν<0 then k>ko tighter binding cooperative

∆φν>0 then k<ko weaker bindinganticooperative

One can then replace k in the multiple independent sites model:

      
v = nk [L ]

1 + k [L ] =
n[ L ]koe−

1 + [L ]koe − =
n[L ]ko

e + [L ]ko

    
v 

[L ] = k n − v ( ) = n − v ( )koe−
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The plot at right shows behavior characterized by these
kinds of interactions. (Note that our convention for k
is the inverse of that used by Cantor & Schimmel,
such that a decreasing φν corresponds to a decreasing

energy cost of association, and consequently more
ligand is bound than in the independent site model.
Conversely, an increasing φν indicates a larger

barrier to binding of second, third, and fourth
ligands, so that less is bound at any point in the
titration.

N.B. - the behavior predicted for φν increasing

(anticooperative binding) is similar in general shape to that predicted for multiple classes of
independent sites. In practice, it may be hard to distinguish the two. C & S suggests that multiple
classes of independent sites is more simple. One should always choose the most simple
model which satisfactorily explains the data.

In contrast, the cooperative behavior predicted for φν decreasing cannot be explained by a simpler

model.
Finally, one can (with great caution in real experimental situations) apply the same type of reasoning

to a system with multiple class of interacting sites, each class having a different interaction
function φν.

N.B. - It is less important that you memorize these different equations, and more
important that you understand them and can derive them. It may well be that a system
you encounter in the future requires a slight twist from these stock solutions - you want
to be able to come up with a correct, custom solution.

Ligand Binding - Infinite Cooperativity
If binding to multiple sites is infinitely cooperative, then binding is all or none and can be written

quite simply as:

      
M o + nL ← →   M n        then       Ka

n =
[M n ]

[Mo ][L ]n

we can derive ν as before,  
      

=
n[M n ]

[ Mo ] + [Mn ] =
nKa

n [M o ][L ]n

[ Mo ] + Ka
n [Mo ][L ]n

=
nK a

n [L ]n

1 + Ka
n [L ]n

      

= n[L ]n

1
Ka

n

 

 
 

 

 
 + [L ]n

    and   
      

=
nK a

n [L ]n

1 + Ka
n [L ]n

   or trivially   
      
[L ] =

nKa
n [L ]n−1

1 + Ka
n [L ]n

ν
[L]

ν

φν decreasing
favors more ligand

binding

φν increasing
favors less ligand

binding
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bringing   

      

1
Ka

n [L ]n
 

 
 

 

 
 + 1 = n

from here we can go to   
      
n = =

Ka
n [L ]n

Ka
n [ L ]n + 1

     ←  Another useful form.

Note that 

      

1 − =
Ka

n [L ]n

Ka
n [ L ]n + 1

 

 
 

 

 
 1

1 −
Ka

n [L ]n

Ka
n [L ]n + 1

 

 

 
 
 
 

 

 

 
 
 
 

=
Ka

n [L ]n

Ka
n [L ]n + 1 − Ka

n [L ]n
= Ka

n [L ]n

So that  
      
ln 1 −( ) = ln Ka

n [L ]n( ) = n ln Ka [L ]( ) = n ln Ka + n ln[L ]

and plotting 
      
ln 1 −( )   vs.   ln[L ]  is predicted to yield a straight line with slope of n and an

intercept of n ln K.

You will also see this in other forms. Note that  
    1 − = n −   (easy, try it!)

Ligand Binding - Intermediate Cooperativity

A semiemperical derivative of this which is often used is  
      
[L ] =

nKa
H [L ] H −1

1 + Ka
H [L ] H

In this case αH is called the Hill constant and indicates the degree of cooperativity.  As αH
approaches n, then the binding is infinitely cooperative.

Other manipulations of these equations are:

      

= n =
Ka

n [L ]n

1 + Ka
n [L ]n

 →   
Ka

H [L ] H

1 + Ka
H [L ] H

=
Ka [L ]( ) H

1 + Ka [L ]( ) H

The figure below plots θ vs. K[L] from the above equation and demonstrates it’s behavior for infinite
cooperativity for αH = n = 1,2,3,4.

0.0
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0.4

0.6

0.8

1.0

0.0

y

0.5 1.0 1.5 2.0 2.5 3.0 3.5

[L]Ka

4.0

Note that n = 1 is a single site (of course, uncooperative) and shows a typical titration profile. In the
other cases, ligand binds slowly at first, but as a few bind, more bind with little (no) energetic cost.

NOTE - αH is not a constant in this treatment - see below.

Hill Plots

Also, as before we have  
      
ln 1 −( ) = H ln Ka + H ln[ L ]

A plot of   
    
ln 1−( )   vs. ln[L] yields a (varying) slope of αH (these are usually called Hill Plots)

For the plot above (infinite cooperativity), this manipulation would yield a straight line with
slope = αH = n. Again, for no cooperativity, the slope would be 1.0.

Now, what happens when we have intermediate cooperativity?
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(    ) =θ
1−θln

ln[L]

stronger
binding

weaker
binding

n ln Kstrong

n ln Kweak

negative
cooperativity

(    )ν
n−νln

(    ) =θ
1−θln

ln[L]

stronger
binding

weaker
binding

n ln Kstrong

n ln Kweak

positive
cooperativity

(    )ν
n−νln

For positive cooperativity, binding is “weak” early in the titration when no sites are occupied, and so
the sites titrate as if there is no cooperativity (in this region αH=1). Very late in the titration, as you
are filling the last remaining sites (now with a strong binding constant), you again see little
evidence of cooperativity (in this region, again αH=1).. In the middle, you see the largest evidence of
cooperativity  (αH>1).

For negative cooperativity, binding starts off at the “strong” limit, and then gets weaker as more sites
are filled.

The plots above are usually called “Hill Plots.”  Note that you will see different nomenclature for the
same plot. As before, the limiting conditions have αH=1, while in the middle of the titration  αH<1.
The Hill constant is usually defined as the slope of the curve at the midpoint of the titration. In
other words, where cooperativity (or anticooperativity) is greatest.
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Review - Ligand Binding
NOTE     : van Holde uses Ka as we do, however, Cantor & Schimmel use Kd ( = 1/Ka). Be warned.
Similarly, van Holde uses nα instead of αH (as we and Cantor & Schimmel do...).

Terms:

      
v = [ LB ]

[ PT ]  =
conc of ligand bound

total concentration of protein
   can range from 0 to n (number of binding sites/protein)

fraction saturation 
  

= v 
n = ∆Obs

∆ObsT
    can range from 0 to 1

Single Site

      
v 

[L ] = Ka
1 + Ka [L ] = −Kav + Ka Plot 

      
v 

[L ]   vs.  v , slope = -K, y-intercept = K

Plot 
      
v 

[L ]   vs.  L[ ], y-intercept = K

Multiple Identical, Independent Sites

      
v 

[L ] = nKa
1 + Ka [L ] = −Kav + nKa Plot 

      
v 

[L ]   vs.  v , slope = -K, y-intercept = nK

Plot 
      
v 

[L ]   vs.  L[ ], y-intercept = K

Multiple Independent Classes of Multiple Identical, Independent Sites

      

v 
[L ] =

ni Ka i

1 + Ka i
[L ]

i =1

nclasses

∑ Plot 
      
v 

[L ]   vs.  L[ ], y-intercept = 

    

n iKa i

i =1

nclasses

∑
Multiple Identical, Infinitely Cooperative Sites

      

v 
[L ] =

nK a
n [ L ]n −1

1 + Ka
n [ L ]n       

= v 
n =

Ka
n [L ]n

1 + Ka
n [ L ]n

then

      
ln 1 −( ) = n ln Ka + n ln[L ] Plot ln

1 −
 
 

 
   vs.  ln[L] , slope = n, y-intercept = nlnKa

Multiple Identical Sites, Intermediate Cooperativity

      

v 
[L ] =

nK a
H [L ] H −1

1 + Ka
H [L ] H

      
= v 

n =
Ka

H [L ] H

1 + Ka
H [L ] H

then

      
ln 1 −( ) = H ln Ka + H ln[L ] Plot ln

1 −
 
 

 
   vs.  ln[L] , slope = H y-intercept = HlnKa

For positive cooperativity,   1 ≤ αH ≤ n    (Fully Independent ≤ ≤ Infinitely Cooperative)
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Models for Cooperativity
MWC - Monod, Wyman, Changeux

Assume that each subunit of a multisubunit protein can exist in two states:
  R (stronger ligand binding) and
  T (weaker ligand binding).

Assume that all subunits are symmetric and that they can be either all R or all T,
but not intermediate (you can argue that this should follow from the symmetry
of the system).

In the absence of ligand, an equilibrium exists:

    
R ← →   T         w / equilib const  L = T

R
Le Chatelier tells us that addition of ligand will shift the equilibrium to the left (L will decrease).
Backing up to examine the R and T states separately, each can be considered a system with n

identical sites and we can look at the microscopic equilibrium constants (kR and kT) for each.
Let’s look at a system with four sites (hemoglobin?). Using nomenclature similar to above, the

microscopic states are given by:

ro + L  r1  

r1 + L  r2  

r2 + L  r3  

r3 + L  r4  

      
kr =

[r1 ]
[ro ][L ] =

[r2 ]
[r1 ][L ] =

[r3 ]
[r2 ][L ] =

[r4 ]
[r3 ][L ]

to + L  t1  

t1 + L  t2  

t2 + L  t3  

t3 + L  t4  

      
kt =

[t1 ]
[to ][L ] =

[t2 ]
[t1 ][L ] =

[t3 ]
[t2 ][L ] =

[t4 ]
[t3 ][L ]

The macroscopic equivalents are:
Ro + L  R1  
R1 + L  R2
R2 + L  R3
R3 + L  R4

KRi
=

[Ri]

[Ri −1][L]
=

Ωn ,i

Ωn, i −1

kr

To + L  T1
T1 + L  T2
T2 + L  T3
T3 + L  T4

KTi
=

[Ti ]

[Ti −1][L]
=

Ωn ,i

Ωn, i −1

kt

remember 
    
Ωn ,i = n !

n − i( ) !i !

so KRi
=

[Ri]

[Ri −1][L]
=

Ωn ,i

Ωn, i −1

kr =
n − i + 1( )! i −1( )!

n!

n!

n − i( )!i!
kr =

n − i + 1( )
i

kr

and KTi
=

[Ti ]

[Ti −1][L]
=

n − i + 1( )
i

kt

so that  for the above, KR1 = 4kr,  KR2 = (3/2)kr ,  KR3 = (2/3)kr,  KR4 = (1/4)kr   etc...
Again, think about this result. Does it make sense?

and ultimately (just as before): Ti =
n!

n − i( )!i!
 

  
 

  kt
iLiTo    and   Ri =

n!

n − i( )!i!

 

  
 

  kr
iLiRo

From the definition of , we have      

    

= total L bound
total # sites =

iRi
i=1

n

∑ + iT i
i =1

n

∑

Ri
i=1

n

∑ + T i
i=1

n

∑

=
i

n!
n − i( )!i!

 
  

 
  kr

iLiRo
i =1

n

∑ + i
n!

n − i( )!i!
 
  

 
  k t

iLi To
i = 1

n

∑
n!

n − i( )!i!
 
  

 
  kr

iLiRo
i =1

n

∑ + n!
n − i( )!i!

 
  

 
  kt

iLiTo
i = 1

n

∑
=

Ro i
n!

n − i( )!i!
 
  

 
  kr

i Li

i =1

n

∑ + To i
n!

n − i( )!i!
 
  

 
  kt

iLi

i =1

n

∑

Ro

n!
n − i( )!i!

 
  

 
  kr

i Li

i=1

n

∑ + To

n!
n − i( )!i!

 
  

 
  kt

i Li

i =1

n

∑

or

but not
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we know that the free forms To and Ro are related by the equilib constant L, that is To = LRT Ro.
and playing the same manipulation that we did previously relating this to , we have

    

=
nkr L 1 + kr L( )n−1 + LRTnktL 1 + ktL( )n−1

1 + kr L( )n + LRT 1 + k tL( )n

now by convention let the ratio of kt and kr equal c          
  
c =

kt
k r

    

= nkr L
1 + kr L( )n−1 + cLRT 1 + ckr L( )n−1

1 + kr L( )n + LRT 1 + ckr L( )n
Rearranging this to the form for a Hill Plot, we have

    

n − = kr L

1 + cL RT
1 + ckr L
1 + k rL

 
 
  

 
 

n−1

1 + LRT
1 + ckr L
1 + kr L

 
 
  

 
 

n−1

As is always a good idea, let’s look at the limits:

As L→0
    n −  →   krL

1 + cLRT
1 + LRT

        
ln n −  →   ln L + ln kr

1 + cLRT
1 + LRT

 
 

 
     (Hill plot)

As L→∞

    

n −  →   krL
1 + cLRT

ckr
kr

 
 

 
 
n −1

1 + LRT
ckr
kr

 
 

 
 
n −1 = kr L

1 + LRT cn

1+ LRTcn −1

        
ln n −  →   ln L + ln kr

1 + LRT cn

1 + LRTcn −1

 
 
  

    (Hill plot)

On a Hill Plot,we see that we predict a straight line with a slope of 1 for each case.
Finally, again going to limits, if T is very highly favored in the absence of ligand then

      
As L  →   0 and  L RT  →   ∞ then  ln n −  →   ln L + ln kr c( ) = ln L + ln kt

As expected, early in the titration the system behaves just like a simple T state.
If we additionally assume that c is small (kr>>kt  ligand binding is much stronger to the R state),

then

      
As L  →   ∞ and   c << 1  then  ln n −  →   ln L + lnk r

As expected, late in the titration the system behaves just like a simple R state.
KNF - Koshland, Nemethy, Filmer

Although the MWC model does explain hemoglobin and various other systems very well, the MWC
model makes the dramatic assumption that the protein can only exist all R or all T. This is most
certainly not true for all systems.

The KNF model allows for mixed states of the subunits within a single protein and so is more general.
It is also called the “sequential model” because subunit can sequentially (one at a time) convert
from T to R and vice versa. It is also much more complicated mathematically and solutions depend
on the exact form of the intersubunit energetics.

Lattice Site Binding
We can also examine a multi-site ligand binding to a multi-

site lattice (the first examples that come to mind include
proteins or drugs binding to DNA).

As before, we can take ν as the number of moles of L bound
per mole of lattice.

In this case, N is the number of monomeric binding sites,
however , N/l is the maximum number of multimeric
ligands which can bind at saturation.. However, before

N=12

l=3
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any ligand has bound, there are N-l+1 potential binding sites. To understand intermediate states,
we must invoke statistical arguments as before.

  
= N flLk   where Nfl is the average number of free ligand sites of length l per lattice and k is the

intrinsic microscopic association constant, just as before.
Cantor & Schimmel derive (pp 878-881) the following expression

    

L = N 1 − l
N( )k 1 − l

N( )
1 −

l − 1( )
N

 

 

 
 
 

 

 

 
 
 

l−1

   there is the caveat that this is strictly only true for large N

As always, let’s look at this in its limits:

For l=1 we have  

    

L = N 1 − N( )k 1 −
N( )

1 −
1 − 1( )

N

 

 

 
 
 

 

 

 
 
 

1−1

= N 1 − N( )k = Nk − k

Rearranging the general lattice equation we have 

    

L = Nk − k
l

N        where  =
1 − l

N( )
1 −

l − 1( )
N

 

 

 
 
 

 

 

 
 
 

l −1

For large l and small ν we have

    

L = Nk − k
N l       where  k

N l = k
N l

1 − l
N( )

1 −
l − 1( )

N

 

 

 
 
 

 

 

 
 
 

l−1

l  →   ∞ →       l k
N 1( )l−1  →   ∞

so that slope in a Scatchard plot goes to -∞, or more generally the slope gets more steep in a negative
sense.

For large l and large ν (as ν approaches N/l), we have

    

L = Nk − k
N l       where  k

N l = k
N l

1 − l
N( )

1 − l
N( ) −

N

 

 

 
 
 

 

 

 
 
 

l −1

= k
N l 0

0 −
N

 

 

 
 

 

 

 
 

l −1

 →   0

So we see an initial steep negative slope which eventually levels out and approaches 0 as we are
saturated.

Early in the titration, binding is strongly favored. This is a result of the increase in entropy of having
ligand bound in many possible different sites. However, as the lattice becomes saturated there are
fewer and fewer sites available and now entropy pushes against binding.
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Kinetics of Ligand Binding / Reaction Kinetics
Unimolecular reactions (C&S Chapt. 16-2)

    
X0

k1 →    
k−1

←     X1

The rate equation is 
    
− dXo

dt = k1Xo − k−1X1

How might one follow such a reaction? One example is to perturb a system at equilibrium. An
example is a temperature jump experiment. At the original temperature, the system is at
equilibrium. If we “instantaneously” change the temperature to a new temperature, a new
equilibrium distribution will be defined, but the system is sitting at the old distribution.

Take   Xo  as the new equilibrium concentration of Xo. Then

Kinetics of Protein Folding
Simple Two-State Unfolding

Kinetics
NOTE     : Convention in kinetics is to use lower case k for kinetic constants and upper case K for

equilibrium constants (except for microscopic equilibrium constants).
Important: Note that the stoichiometry of a reaction does not tell you anything about
the kinetic mechanism of a reaction! This is very often overlooked.
Example:

For the reaction whose stoichiometry is:   aA + bB k →   cC + dD
The potential kinetic mechanisms could lead to almost any velocity equation, including:

  V = kAaBb   or      V = kAB2   or    V = kA   or      V = kB2   or    V = k  or   ...
Remember: the upper equation simply describes the stoichiometry of the reaction.
Why is this?
Because the underlying kinetic mechanism for the overall reaction

    2A + 2B k →   2C
might be:

    V = kAB2       A + 2B slow →    X +A , fast →      Y fast →    2C
  V = kA         A slow →    A * +A , fast →      W +2B, fast →      2C
    V = kB2       2B slow →    V +A , fast →      Z +A , fast →      2C
and many other possibilities.

Simple kinetic mechanisms
Unimolecular, one-step reactions

e.g. protein folding

−
dA

dt
= k1A − k−1B let     ∆A = A − Aeq      ∆B = B − Beq

then

−
d∆A

dt
= k1 ∆A + Aeq( ) − k−1 ∆B + Beq( )

note that from the stoichiometry, you know that ∆A=-∆B

−
d∆A

dt
= k1∆A + k1Aeq + k−1∆A − k−1Beq = k1 + k−1( )∆A + k1 Aeq − k−1Beq

At equilibrium,     k1Aeq = k−1Beq

−
d∆A

dt
= k1 + k−1( )∆A   which then leads simply to  −

d∆A

∆A∫ = k1 + k−1( )dt∫
finally

    
A

k1 →   
k−1

←     B
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− ln ∆At + ln ∆Ao = ln ∆Ao
∆At

= k1 + k−1( ) t − 0( )

∆At = ∆Aoe− k1 +k−1( )t

At = Aeq + Ao − Aeq( )e− k1 +k−1( )t

This tells us that A approaches exponentially its equilibrium value. Make sense?
A simple example of a unimolecular, one-step reaction is protein folding (see later).

Pre-equilibrium kinetics
(Leonor Michaelis and Maude Menten, 1913)

    
E + S

k1 →   
k−1

←     ES k2 →   E + P

The simplest kinetic formalism falls directly from our equilibrium studies. If we assume
that our reaction (k2, above) is very slow relative to both the on (k1) and off (k-1) rates
for binding of substrate to enzyme, then we can simply treat substrate binding as an
equilibrium binding (using the equations above). In other words, the first step is always
at equilibrium, unperturbed by the second step. The velocity  of the reaction under the
simplest of conditions is then  V = k2[ES], where [ES] is determined as before for ligand
binding (also remember that [ES] is proportional to   v , so that V = k2Ka[E][S].
Solve for the equilibrium in terms of [E]t and [S]t

      

Ka = [ES ]
[E ][S ]

      [E ]t = [E ] + [ES ]     [S ]t = [S] + [ES ]

Ka = [ES ]
[E ]t − [ES ]( ) [S ]t − [ES ]( ) = x

Et − x( ) St − x( )
Ka Et − x( ) St − x( ) = x
This can be solved exactly very simply, but for simplicity, if we can assume substrate in excess, then:

      

Ka Et − x( )St = x

KaEtSt = KaxSt + x

x = [ES ] = KaEtSt
KaSt + 1

= EtSt

St + 1
Ka

= EtSt
St + Kd

Finally,

      
V = k2[ES ] = k2EtSt

St + Kd
Figuring that the reaction is fastest as St→∞, calculate Vmax (try it!).
This looks very similar to the equation for simple ligand binding (as we would expect):

      

v = Ka [L ]
1 + Ka [L ] = [L ]

1
Ka

+ [L ]
= [L ]

Kd + [L ]

Steady state kinetics
(G. E. Briggs & J. B. S. Haldane, 1925)

    
E + S

k1 →   
k−1

←     ES k2 →   E + P

If pre-equilibrium cannot be assumed, then we can take a slightly different approach
As before, we have the equations for mass conservation:

      [E ]t = [E ] + [ES ]     [S]t = [S] + [ES ]
We then assume that after the reaction has been running for some time, the rate for formation of [ES]

equals the rate of its loss - we assume that [ES] has reached steady state:
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−
d[ES]

dt
= 0 = k1[E][S] − k−1[ES] − k2[ES]

k−1 + k2( )[ES] = k1[E][S]

k1

k−1 + k2

= 1

Km

= [ES]

[E][S]
We can see that this is just the same equation we dealt with above, except that 1/Km substitutes for

Ka (note that the latter is simply 1/Kd).
It should be obvious that “pre-equilibrium” kinetics is simply a special case of the more general steady

state kinetics (in pre-equilibrium kinetics, k-1>>k2).

The form of the solution for these reaction equations is the same as the form of the
solution for the related binding equations. In the same way that we devised Scatchard
and other plots for binding, we can do exactly the same for kinetic analyses. They now
adopt new names.
Note that the same caveats apply as before, regarding the manipulation of raw data and
the resulting effects on error analysis.
Similarly, the same kinds of analyses can be brought in to consider multiple sites,
independent or dependent.
Finally, a reminder that the above analyses assume substrate in excess. For an
enzymatic reaction, note that substrate is depleted with time, so that what is in excess
initially may not be in excess near the end of the reaction. Also, since steady state is
assumed, the equations are not valid for the very beginning of the reaction (pre-steady
state kinetics).
Single Site Binding

      
v 

[L ] = Ka
1 + Ka [L ] = −Kav + Ka Plot 

      
v 

[L ]   vs.  v , slope = -K, y-intercept = K     (Scatchard)

Single Site Kinetics

      

v
[S]

=
1

Km
k2Et

1 + 1
Km

[L ]
=

1
Km

Vmax

1 + 1
Km

[L ]

v
[S]

= − 1
Km

v + Vmax
Km

Plot 
      
v

[L ]   vs.   v , slope = -1/Km, y-intercept = Vmax/Km     (Eadie-Hofstee)

Exact solutions (numerical integration) of complex rate equations
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The Folding of Proteins and Nucleic Acids

Quick review - the amino acids
Nonpolar - low solubility in water

Always: Ala, Val, Ile, Leu. Almost always: Phe, Trp, Met
Charged - high solubility in water, must interact strongly with water

Glu, Asp, Arg, Lys
Strongly Polar - need to interact with water

Asn, Gln, Ser, Thr
Ambiguous

Cys, His - pKa’s near 7.0.  Clearly polar when charged, fairly nonpolar when neutral
Tyr - has a H-bond donor, but is otherwise very nonpolar. Indeed it is normally found in nonpolar

niches in protein structures - rarely at the surface.
Special

Gly - nonpolar.       More     freedom to rotate than others (wider range of phi and psi angles).
Pro - nonpolar.      Less     freedom to rotate than others (phi fixed, psi limited - see below).

The Forces that Govern Protein Folding

Coulombic Charge - Charge Interaction

    
E coulombic = 1 q1q2

r 2

Dipolar Interaction

      
Edipolar = 1

r 
µ A •

r 
µ B

r3 −
3

r 
µ A •

r 
r ( ) r 

µ B •
r 
r ( )

r5

 

 
 

 

 
 

θ

r

where µA and µB are point dipoles (vectors) separated by a distance r.
Remember that carbonyl C=O and amide N-H bonds have an uneven
distribution of electrons - that is, each has a dipole moment associated
with it. Note from above that the dipolar interaction depends on both
the distance and the angle between the dipoles.

Point charge approximation. One can model the dipolar interaction
using a point dipole approximation as above, or alternatively, since the
distance between dipoles is short, it may be better to view each dipole
as two separated charges. This is shown in the lower figure at right. We
can now view the interactions as simple coulombic charge-charge
interactions, according to:

      

Edipolar = 1 qiq j

r ij
2

i , j
∑

This is a common approach in “molecular dynamics/mechanics” calculations. Each atom
in the entire protein is assigned a partial charge and the coulombic interactions are
summed. Again note that an important parameter in this estimation is the dielectric (ε)
of the intervening medium. Values from 2-5 or a bit higher are realistic. (ε for water is
80!). In this case, there is little between the charges and so a low dielectric is
reasonable. For dipoles which are separated a greater distance in the protein, The
effective dielectric of the intervening protein will be somewhat higher. However,
estimates are difficult to make and the value will be different in different parts of the
protein.

O

N

H

δ+

δ−

δ+

δ−
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Dipole - Point Charge Interactions
You can readily imagine interactions between a dipole moment from one part of the
protein structure and a point charge nearby (a charged amino acid for example). This
intermediate case is again well approximated by the full point charge picture presented
above.

van der Waals Interactions
this interaction is a result of dipolar interactions between transient induced dipole
moments within atoms. Electrons in any given atom may at any point in time be
non-uniformly distributed about the nucleus (although on average they are
symmetrically displaced). This non-uniform distribution results in a momentary dipole.
The resulting dipole can then induce a dipole in a neighboring atom, of opposite
direction. This leads to an attractive force between the atoms. However, at shorter
distances e-e- repulsion becomes greater than this attractive force, so that the atoms
repel.
How important are van der Waals interactions to protein structure?

A single van der Waals interaction is only a few hundred calories, however, there are many such
contacts in a single protein. So you can imagine that the energies could add up significantly.
However, the folded and unfolded forms of the protein both have a large number of van der Waals
contacts (the latter has many with water), so that the net stabilization of protein structure imparted
by van der Waals interactions may be small.

Bond stretching
Energies are too big to worry about. In other words, the energy cost to significantly
lengthening (or shortening) a covalent bond in the final (average) protein structure is so
high that such considerations can be ignored. Covalent bonds are considered to be
constant in length and set at classic values for the bond involved.

Torsional constraints - Rotations around rotatable bonds
Aside - Stereochemistry at the Cα position

The stereochemistry at the Cα position can be easily

remembered by use of the little corny pneumonic “CORN.”
With the (little) hydrogen pointing towards you, proceeding
in a clockwise direction, the other three substituents
should spell out “CORN” as shown at right (another
contribution from Jane Richardson).

H
CO

Cα

N

R

Rotation around some bonds is also too high in energy cost. For example, the peptide
bond CO-NH has partial double bond character. For our purposes, then it can be
assumed that rotation of the peptide bond from the angle at which the π system is
planar costs too much energy to occur with any frequency.
However, rotation around the other two bonds in the polypeptide chain does occur at
low energy. Consequently, variation in these angles will contribute to differences in
protein structure. (see C&S pp 254-257 for a detailed explanation of the sign
conventions).

ϕ ranges from -180 to 180° with 90° corresponding to a cis
configuration. An all trans backbone (if it adopted the simple
planar structure above) would correspond to ϕ and ψ = 180°.

N

N

RH

H O

O H

psi ψphi ϕ
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N
C

C
N

C
C

N
C

C

H Ri-1

O Ri H

O H Ri+1

O

ϕi ψiψi-1 ϕi+1

H

HH

For a protein α-helix, ϕ = -57° and ψ = -47° for every amino acid unit in the helix.
Ramachandran plots show that only certain ranges (and combinations of ranges) are allowed for these

angles. This is a result of steric considerations of the functional groups. An important distinction is
made for the amino acid glycine (Gly): Due to the very small size of its functional group (hydrogen),
a much wider variety of angles is energetically reasonable. (see C&S p. 259 for illustration). This
has important implications for protein folding.

Sterics effects possible phi / psi angles
Of course, the major restriction on phi and psi angles arises due to the bulk of the groups attached to

a given set of peptide bonds. Only certain ranges of angles allow low energy steric interactions.
Staggered vs. eclipsed

As we have all seen in organic chemistry classes, bonds prefer to rotate such that their attached
bonds are “eclipsed.” This is most simple explained in terms of sterics... Suffice it to say that this
effects preferred values of phi and psi.

The dipolar interaction significantly effects
Ramachandran values for phi and psi

The picture at right shows that the dipole
moments associated with the peptide bond place
energetic restrictions on the angles which can be
adopted by phi and psi. Adjacent peptide bonds
would like to interact favorably.

Effects of unusual amino acids on phi and psi
Gly has a simple hydrogen as its “functional
group” (R above). Consequently the steric
restrictions are much less for Gly and it is allowed
a much wider range of phi/psi angles (see C&S).

Pro is also unusual in that the normal Cα-N bond
is tied up in a 5-membered ring. Consequently the

phi angle is rigidly fixed near -60°. The psi angle
is not rigidly fixed, but is significantly more
restricted than in any other amino acid. The
angles for psi which result in energy minima are
-55° (compact chain) and 145° (extended chain).
In addition, the psi angle at the amino acid i-1 is more restricted and constrained to
different values than in other contexts (the NH “upstream” of it is now N-R).  So most
amino acids are very sensitive to the presence of Pro at i+1 (the exception is Gly, which
already has a wide range of angles available to it and has little steric clash to present to
the N-R group).

f

Covalent Interactions
As for bond stretching and amide bond rotation (but much more strongly), the
disruption of a covalent bond requires a very high energy cost. Thus, covalent bonds are
not considered as variable.

-
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“Non-bonding” Interactions
A variety of non-bonding interactions contribute to protein stability, and in fact, it is
these interactions, together with torsion angle changes which drive the formation of
secondary and tertiary structure.
London dispersion energy -

Hydrogen bonding
One way of viewing hydrogen bonding is simple electrostatics.
We could view it as a charge-charge attraction as shown at
right. This is probably overly simplistic and does not include
orbital overlap, which results in an angular dependence to the
interaction.

Water - the unusual solvent
Compound Melting

point
(K)

Boiling
point (K)

H2O 273 373
H2S 190 211
CH3(CO)OH 290 391
CH3(CO)CH3 178 330
CH3CH2OH 156 351
CH3CH2CH3 83 231
CH3OCH3 135 249
CH3NH2 181 267
CH3CH3 101 185

Water structure - hydrophobic interactions
C&S Part I (pp 279-89) discuss hydrophobic interactions and water structure.

It’s not as simple as they imply (see Dill below), but the concepts are interesting.
Water forms “cage-like lattices” around hydrophobic molecules

Water is indeed unique in its properties. Even in its liquid state, it adopts transient local “crystalline”
structures (microscopic icebergs). Cage like lattices can form which can sequester small
hydrophobic molecules. This results in enthalpic stabilization. But formation of these cage-like
polyhedrons severely restricts the entropy of the water molecules - ie. entropically destabilized..

Hence there is a large entropic cost to the solvation of nonpolar molecules -- the
hydrophobic effect is typically viewed as entropically driven.

Kauzman measured ∆H and ∆S for the transfer of a number of different molecules from nonpolar
solvents to water (p. 285). ∆H is negative in all cases (the nonpolar molecules prefer water because
the ice like structures create hydrogen bonds), but ∆S is negative as well (the nonpolar molecules
decrease the entropy of the system in going to water and so prefer the non polar solvent). At room
temperature, ∆G strongly favors transfer to the non polar solvent (entropically driven).

Denaturation by urea and guanidinium hydrochloride
Various hydrophobic or nonpolar side chains prefer 8 M urea to water. (that is ∆Gtr water→gua is

negative (similar arguments).

Ionic interactions
They occur in proteins. But are thought to be a minor contributor to stability (see below).

Like charges - repulsive - enthalpy unfavorable
Opposite charges - attractive - enthalpy favorable

A charge in aqueous solution requires substantial solvation. This decreases the entropy of the water.
An ion pair requires much less.

Disulfide bonds
Significant entropic destabilization of the unfolded structure.

Recent studies suggest that disulfide bonds don’t direct protein folding, but stabilize structures which
already form. They stabilize the structure not so much by lowering the energy of the folded state,
but by entropically raising the energy of the unfolded state.

-- ++
N

N

O H

+0.28 e-0.39 e
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Dominant Forces in Protein Folding? - Ken Dill Review (Biochemistry 29, 7133, 1991)
Electrostatic interactions

Long-range     - if the net charge of a protein is non zero (ie the protein is on either side of its isoelectric
point), then there will be a net repulsive interaction between unbalanced like charges. This forms
the basis for the general trend that a protein most stable at its isoelectric point.

Specific charge interactions     - attractive ion pairing (salt bridges, ionic bonds). Not too sensitive to
bulk dielectric, since the interaction is short range - little intervening medium. Can effect unfolded
state as well as folded state.

Most salt bridge interactions occur at the surface of the protein. The ion pair is not completely self-
neutralizing and so requires solvation (cost to bury an ion pair is on the order of 7 kcal/mole).
Rarely found in the interior of proteins. Any solvent effects which stabilize/destabilize ion pairs at
the surface of the protein would have similar stabilizing/destabilizing effects on the ions in the
unfolded state (little net effect). In fact recent studies suggest that hydration is better in the
unfolded state (ion is more accessible).

Often associated with a change in partial molal volume. Isolated charges require extensive hydration.
The water packs tightly around the charge - electrostriction.

Clearly not the dominant force in protein folding - protein stability is not a steep function around the
pI, nor is stability strongly dependent on salt (dielectric of the medium).

Evolutionary studies show that surface charges are not highly conserved. Mutagenesis studies have
confirmed that surface charges can usually be mutated with little perturbation of stability.

Too few to be a major net structural force (1-3 kcal/mole/ion pair, ≈5 ion pairs/150 aa’s).
Hydrogen bonding and van der Waals interactions

H         -        bonding:    discussed previously. View it either as 1) a local charge-charge attraction (with partial
charges) or 2) as a bonding interaction involving orbital overlap.

van der Waals:    Like H-bonding, it is short range and will have similar effects on energetics. Hard to
model and understand the way we do H-bonding.

Helix-coil transitions:    Balance between entropy and enthalpy. At low temperatures enthalpy
dominates and the helix is favored. At high temperatures, entropy dominates and the random coil is
favored. A sharp transition occurs. In general increased net charge of the protein should disfavor
helix formation and favor the more expanded random coil. Solvents which H-bond well compete for
the intrahelical H-bonding and so destabilize the helix.

Similar arguments for β-sheets.
Kauzmann argued early on (and Dill agrees) that although H-bonding interactions are
important to details of structure, they cannot drive protein folding.

The reason is that the H-bond interactions with water in the unfolded state are quite strong. The net
change is very small and could go either way.

Cooperativity in formation of protein structures
The first H-bond in a unit of secondary structure typically costs energy due to loss of configurational

entropy. But once that price is paid, subsequent H-bonds forms without the energetic expense. For
this reason, helices become more stable and transitions sharpen with increasing length.

N-methyl-acetamide (CH3(CO)(NH)CH3) is a popular model to study effects on hydrogen bonding
interactions (mimics the peptide backbone). At 25° C, dimerization is disfavored. Loss of
translational entropy?
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Additionally, consider entropic effects in the formation of multiple H-bonds. In the pairing of a
dipeptide, two bonds can form in a single dimer. When only one forms, the two molecules still
maintain a rotational degree of freedom about that bond. When the second bond forms, that
rotation is completely lost - entropy decreases. Difficult to separate the effects.



Chem 728 Notes - 1998 Page 36

Dill’s conclusion: H-bonding alone will not drive protein folding, but if other processes
favor folding, then H-bonds will be favorable within the structure.
Statistics from known protein structures:

C=O groups:
89% are H-bonded

43% to water
11% to side chains
46% to main chain

NH groups:
88% are H-bonded

21% to water
11% to side chains
68% to main chain

If H-bonding were dominant, then
Solvents which are good H-bonders should destabilize protein structure, those that are bad H-bonders

should have little effect. Observation: 1% SDS can denature proteins, despite its low concentration
and the fact that it does not destabilize helices.

Tetraalkylammonium salts increasing denature proteins as the length of the alkyl group increases
(shouldn’t effect H-bonding).

Alcohols are more hydrophobic than water and they stabilize helices, yet they denature proteins.
Mutagenesis: H-bonds effect stability, but the magnitude and direction of the effect
varies significantly.
“Local” interactions - “Intrinsic” properties (note his definition of “intrinsic”)

Must know the differential effect on native vs. unfolded state.
Define local interactions as those occurring between an amino acid and another amino acid 3-4

distant in the primary sequence
At 20° C, the propensity for a sequence to form a helix is generally quite small.
Additional stability occurs if helix formation leads to burial of a nonpolar surface.
Helices are further stabilized by charge compensation at the ends.
Helices can be stabilized by salt bridges and other side chain interactions.
Bottom line: context can be at least as important as “intrinsic” properties. Early on, people took

sequences which were known to form helices in proteins and were somewhat surprised to find that
they did not form helices when isolated in solution. Should be no surprise now.

Helices in globular proteins are on average short (6-12 residues) - much shorter than should be stable.
Conversely, the longer a helix, the more stable it should be, yet we don’t see lots of long helices in
solution (think about it - why?).

Context “rules” for formation of helices in proteins (note that “rules” is in quotes...)
Charges are distributed to stabilize the helix dipole moment (or the end carboxyl oxygen and amino

proton).
Ends of helices are often at the surface (same reason as above)
Helices can pack in anti-aligned pairs to stabilize dipole moments (questionable importance)
Other problems with “intrinsic” properties
Cannot predict sheet structures, which are inherently non-local.
Intrinsic properties have shown a 64% average success rate in predicting structure
He goes through an analysis which says that this means local (intrinsic) factors contribute 15-30% of

the total information required to predict a structure.
Hydrophobic effect - nonpolar solvation

Nonpolar solvents denature proteins by lowering the energy of the unfolded state
Evidence:

1) Temp dependence of the free energy of folding follows that of transfer of nonpolar model
compounds from water to nonpolar media
2) Crystal structures confirm sequestering of nonpolar groups
3) Dependence of stability on the nature of the salt species in solution follows the Hofmeister series,
suggesting hydrophobic interactions
4) Mutagenesis and other studies suggest that stability is proportional to the oil-water partitioning
of the amino acid
5) Hydrophobicity of core amino acids is evolutionarily conserved
6) Computer simulations of incorrectly folded proteins shows that poor interior/exterior distribution
of hydrophobic residues is a major factor in instability.
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Intro to hydrophobic interactions
Note first that mixing of simple solutions is entropically driven. Molecules want to
“spread out” and obtain the highest possible translational entropy (dispersion). However
repulsion between molecules counters this driving force somewhat. When two
components A and B are relatively insoluble in each other (strong repulsive forces
between them), an enthalpic term opposes the entropic term. With increasing
temperature, the entropic term dominates and the solute is eventually allowed to mix.
Or rather, solubility goes up.
However, entropic terms can also oppose mixing. In water, nonpolar molecules are
harbored in water “shells,” the polyhedron we discussed before. The dissolution of a
nonpolar molecule in the water, leads to extensive ordering of this solvation shell, and
hence to a decrease in entropy of the system.

Narrow definition of hydrophobic interactions: Dill describes the hydrophobic
interaction very narrowly as the transfer of a nonpolar solute to an aqueous solution
only when the mixing is “opposed by an excess entropy.”

“Excess entropy” is the entropy associated with transfer of a solute which is not derived from the
simple (statistical) entropy of mixing.

    
∆Sexcess = ∆Stotal − ∆Sideal _mixing

Another property of the solvation of nonpolar solutes in water is that the transfer to water is
characterized by an enthalpy with a strong temperature dependence (in other words, the heat
capacity for transfer is large and positive).

Remember that ∆H = Cp∆T
Now we have (assuming heat capacity independent of temperature::

d∆H = ∆Cp dT

d∆H
Th

T

∫ = ∆Cp dT
T h

T

∫
∆HT − ∆HTh

= ∆Cp T − Th( )
∆HT = ∆HTh

+∆Cp T − Th( )

d∆S =
∆CpdT

T

d∆S
Ts

T

∫ = ∆Cp

dT

TT S

T

∫

∆ST − ∆STs
= ∆Cp ln

T
Ts

 
 
  

 
 

∆ST = ∆STs
+∆ Cp ln

T
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 
  
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 

Therefore, assuming that the heat capacity is independent of temperature:

    

∆GT = ∆HT − T∆ST = ∆HT h
+ ∆Cp T − Th( ) − T∆ST s

− T∆Cp ln T
Ts

 
 
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This means that ∆G does not necessarily steadily decrease with
temperature as would be expected for ∆G = ∆H - T∆S if ∆H and ∆S
were temperature independent. The diagram at right shows that
∆G (for the unfolding of the protein) may reach a maximum at a
particular temperature. Indeed, a similar plot can be drawn for the
transfer of benzene to water, and benzene is least soluble in water
near room temperature.

If protein folding were driven by this process, then we might expect
proteins to exhibit a temperature at which the hydrophobic effect is
maximal and the protein is therefore maximally stable (ie the
protein would tend to unfold more readily at higher temperatures
and at lower temperatures). This may be somewhat
counterintuitive, but once you accept hydrophobicity as a major
determinant of protein stability and the fact that the hydrophobic
effect weakens at temperatures below its maximum, then you can
see why some proteins are unstable at low temperatures - "cold
denaturation." Of course for many proteins, the low end of stability
may be below the freezing point of water and so cold denaturation
is never observed.

This also means that the hydrophobic effect is entropy driven at lower temperatures, but enthalpy
driven at higher temperatures! Why? Going back to the iceberg model for nonpolar solute solvation,
at low temperatures the "cages" are well-formed and water molecules get to form lots of hydrogen
bonds (∆H happy), but there are few conformations available that optimally satisfy ∆H, so entropy
is low (∆S unhappy). At higher temperatures the opposite becomes true -- the clathrate structures
break down (or rather they flex, "bending" the H-bonds), increasing entropy (∆S happy), but at the
cost of lost (or weaker) H-bonds (∆H unhappy).

Bottom line: hydrophobic effects are characterized by a large heat capacity. Protein
unfolding is typically characterized by a large heat capacity. Therefore protein
unfolding must be accompanied (and by dominated by) the solvation (exposure) of
nonpolar surfaces.
Residual enthalpy and entropy of unfolding

There is an additional positive entropy and enthalpy of unfolding, not accounted for by predictions
from nonpolar solvation. From where do these arise? Residual enthalpy seems to increase with
polar content - one proposal: folded protein has more H-bonding contacts. As for entropy, unfolding
should result in increased entropy for the protein (bond angles - configurational entropy).

Site-directed mutagenesis studies - single amino acid substitutions
Various studies have now been done which involve the substitution of an interior amino acid in a

protein by various other amino acids. If the system were simple, we could assume that the interior
is represented by ethanol or a similar solvent, and that unfolding of the enzyme is a simple transfer
from that solvent to water. To the extent that this is true, a plot of ∆∆G for each mutant as a
function of ∆Gtr for that amino acid should yield a slope of 1. The non-ideality of this slope could
arise from a number of factors:

1) “deformability” of the cavity in which the amino acid sits. How well does the protein adjust its
local configuration to accommodate the substitution
2) specific interactions of each amino acid with the cavity, including enthalpy and entropy
3) how well does the denatured form of the protein mimic pure aqueous medium?
4) how exposed to water is the amino acid in the folded form (we assumed not at all)?

If the rest of the protein stabilizes a “cavity” into which the amino acid can fit, then the transfer of the
side chain into that cavity will be less energetically costly than transferring the same side chain
into the model solvent -- in the latter case, there is an energetic cost to create the cavity.
Conversely, if the cavity is rigid and one tries to insert a larger amino acid by substitution, then the
energetic cost would be higher than expected (slope > 1). These kinds of analyses have been done on
a number of proteins, with slopes ranging from 1 to 4.

Summary: Definition of Hydrophobicity
Transfer of a nonpolar solute from non aqueous media to aqueous media when:

1) transfer is energetically strongly disfavored
  and
2) transfer is associated with a large increase in heat capacity

Opposing Forces
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If hydrophobicity were the only force involved, proteins would be much more stable than they are.
What else is there?

Our discussion of hydrophobicity dealt with entropic effects from ordering water, but we ignored the
large decrease in the entropy of the polypeptide associated with folding. We return to the entropy
associated with rotation about the phi and psi bonds, and about the bonds in the amino acid side
chains. He calls this “configurational” entropy. He also refers to this as “local” entropy.

Another aspect of the entropy loss in folding is what he calls “nonlocal” entropy. This has to do with
the number of possible ways a polymer chain can fold onto itself. The hydrophobic driving force
wants to minimize the exposure of nonpolar groups - there is only one (or maybe a few)
configuration which minimizes that exposure. Consequently, on protein folding the chain folding is
reduced from a very large number of possibilities down to 1 or a few.

We come back to things like disulfide linkages. These covalent linkages reduce the nonlocal entropy of
the unfolded state -- there are now many fewer ways of folding the polymer chain in solution.
Similarly, he argues that carbohydrates added to proteins can stabilize them by restricting the
number of possible states in the unfolded form of the protein.

Internal architecture of proteins
To some extent, the internal architecture of proteins is dictated by this need to pack in the one form

which will optimize burial of hydrophobic groups. But of course, we can also now see an important
role for the H-bonding which is so readily observable. Which is dominant? Hard to say. Both are
important. The upshot of this entire article is that although H-bonds are easy to see and to talk
about, when all energies are added up, the hydrophobic effect is energetically the much larger force
-- not the only force, but the more dominant one...



Chem 728 Notes - 1998 Page 40

Analyses of Protein Folding
Two-State Model for Protein Folding

The basic model:       N <-> D
Most protein unfolding studies assume a two-state model for denaturation. The protein can exist in

only two discrete states: native (N) and denatured (D).

Multi-State Model for Protein Folding
Effect of multiple states on observables - what if unfolding is NOT two-state?

Assume the following scheme for protein unfolding:

      N ← →   I1 ← →   I2 ← →   . . . ← →   In ← →   D
where N refers to native and D to denatured.
Given a microscopic observable for each state yi then the overall macroscopic observable y is given by:

    
y = f NyN + f DyD + f iyi

i =1

n

∑

where fi is the mole fraction of proteins in state i.  Then  
    
f N + f D + f i

i =1

n

∑ = 1

The observable can then be expressed as:

    

y = 1 − f D − f i
i=1

n

∑
 

 
 

 

 
 yN + f DyD + f iyi

i =1

n

∑

y = yN − f DyN + f DyD + f iyi − f iyN( )
i =1

n

∑
If we measure our observable as before, assuming a two-state unfolding process, we will calculate an

apparent fractional unfolding:

    

f app = y − yN
yD − yN

=
yN − f DyN + f DyD + f iyi − f iyN( )

i =1

n

∑ − yN

yD − yN

f app =
f D yD − yN( ) + f i yi − f i yN( )

i =1

n

∑
yD − yN

f app = f D + f i
yi − yN
yD − yNi=1

n

∑

f app = f D + f idi
i=1

n

∑    where   di =
yi − yN
yD − yN

from before, the apparent equilibrium constant for unfolding is:  
    
Kapp = D

N( )
app

=
f app

1 − f app

We can also talk about (but maybe not measure) the true equilibrium constant: 
  
K D = D

N =
f D
f N

We can also talk about each microscopic equilibrium constant:  
  
K i =

I i
N =

f i
f N

    

f app
f N

=
f D
f N

+
f i
f N

di
i =1

n

∑ = KD + K idi
i =1

n

∑ = KD 1 +
Ki
KD

di
i =1

n

∑
 

 
 

 

 
 
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1 − f app
f N

=
1 − f D + f idi

i =1

n

∑
 

 
 

 

 
 

f N
= 1 − f D

f N
− f i

f N
di

i =1

n

∑

1 − f app
f N

=
f N + f i

i=1

n

∑
f N

−
f i
f N

di
i =1

n

∑ = 1 +
f i
f N

−
f i
f N

di
 
 
  

 
 

i =1

n

∑ = 1 +
f i
f N

1 − di( ) 
 
  

 
 

i=1

n

∑

1 − f app
f N

= 1 + K i 1 − di( )[ ]
i =1

n

∑

    

Kapp =
f app

1 − f app
=

f app
f N

 

 
 

 

 
 

1 − f app
f N

 

 
 

 

 
 

=

KD 1 + K i
K D

di
i =1

n

∑
 

 
 

 

 
 

1 + Ki 1 − di( )[ ]
i=1

n

∑
 

 
 

 

 
 

= K D

1 + Ki
KD

di
i =1

n

∑

1 + K i 1 − di( )[ ]
i =1

n

∑

Finally,
We have not yet said anything about how yi depends on i. But let’s look at two extremes, with one

simple assumption.
The assumption:  the observables for the intermediate states (yi) lie between yN and yD.
Case 1:  intermediate states have properties similar to the denatured state
then yi≈yD and di≈1

    
Kapp di ≈ 1( ) = KD

1 + K i
KDi =1

n

∑
1 + 0 = KD + K i

i =1

n

∑
Case 2:  intermediate states have properties similar to the native state
then yi≈yN and di≈0

    

Kapp di ≈ 0( ) = KD
1

1 + K i
i =1

n

∑
In any case, only when Ki=0 (no intermediates), then Kapp=KD.
In general, if intermediates exist, then Kapp will depend on how di depends on the intermediate

states. One way to test for intermediates is to measure Kapp with different observables. If the two
values of Kapp are not the same, then Kapp is not a true KD - the process is not two state.

(Note from the extreme cases above, that the converse is not necessarily true).

Calorimetry
Similarly, we can worry about how the van’t Hoff enthalpy that one has measured by
the previous approaches is effected by the existence of intermediates.

Remember that
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∆H = RT2 ln K( )
T

∆Happ = RT 2
T

ln K D

1 + Ki
KD

di
i =1

n

∑

1 + K i 1 − di( )[ ]
i =1

n

∑

 

 

 
 
 
 

 

 

 
 
 
 

 

 
 
 

 
 
 

 

 
 
 

 
 
 

∆Happ = RT 2
T

lnK D + ln 1 + K i
KD

di
i=1

n

∑
 

 
 

 

 
 − ln 1 + Ki 1 − di( )[ ]

i=1

n

∑
 

 
 

 

 
 

 
 
 

  

 
 
 

  

∆Happ = RT 2 ln KD
T

+ RT 2
T

ln 1 +
K i
KD

di
i =1

n

∑
 

 
 

 

 
 − RT 2

T
ln 1 + K i 1 − di( )[ ]

i =1

n

∑
 

 
 

 

 
 

∆Happ = ∆HD + RT 2 1

1 +
K i
KD

di
i =1

n

∑
T

Ki
KD

di
i =1

n

∑
 

 
 

 

 
 − RT 2 1

1 + K i 1 − di( )[ ]
i =1

n

∑
T

K i 1 − di( )[ ]
i =1

n

∑
 

 
 

 

 
 

∆Happ = ∆HD + RT 2 1

1 + K i
KD

di
i =1

n

∑

K i
T

KD
di − KD

T
Ki

KD
2 di

 

 

 
 
 

 

 

 
 
 i =1

n

∑
 

 

 
 
 

 

 

 
 
 

− RT 2 1

1 + K i 1 − di( )[ ]
i =1

n

∑

K i
T

1 − di( ) 
  

 
  

i =1

n

∑
 

 
 

 

 
 

Remember that:  
      
∆H = RT2 ln K( )

T
= RT 2 1

K
K
T

    so that    K
T

= K
RT 2 ∆H

Then

    

∆Happ = ∆HD + 1

1 + K i
K D

di
i =1

n

∑

∆H i Ki
K D

di − ∆HD
Ki

KD

di

 

 
  

 

 
  

i =1

n

∑
 

 
 
 

 

 
 
 

− 1

1 + Ki 1 − di( )[ ]
i=1

n

∑
∆H iK i 1 − di( )[ ]

i =1

n

∑
 

 
 

 

 
 

∆Happ = ∆HD +

∆H i − ∆HD( ) K i

KD

di

 

 
  

 

 
  

i =1

n

∑

1 +
K i
KD

di
i =1

n

∑
−

∆Hi K i 1 − di( )[ ]
i=1

n

∑

1 + Ki 1 − di( )[ ]
i=1

n

∑

∆Happ = ∆HD 1 −

1 −
∆H i
∆HD

 
 
  

 
 

K i

K D

di

 

 
  

 

 
  

i =1

n

∑

1 +
K i
K D

di
i =1

n

∑
−

∆Hi
∆HD

K i 1 − di( )[ ]
i =1

n

∑

1 + K i 1 − di( )[ ]
i =1

n

∑

 

 

 
  

 

 
 
 

 

 

 
  

 

 
 
 

a
gain, as expected if Ki are all zero (two state process), then ∆Happ = ∆HD.

Again, however, if all of the di are zero but Ki are not, we have:

    

∆Happ = ∆HD 1 −

∆H i
∆H D

K i
i =1

n

∑

1 + Ki
i =1

n

∑

 

 
  

 
 
 

 

 
  

 
 
 

And, again ∆Happ ≠ ∆HD.
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Differential Scanning Calorimetry
The method

The plots at right show a measurement of the
heat capacity of a solution of protein. The
plot to the left just shows the DSC scan for a
solution of constant heat capacity, with no
reaction proceeding. The plot to its right
shows the scan for a solution with constant
solution heat capacity, but for which a
reaction with non-zero heat capacity is
proceeding with increasing temperature. At
the beginning of the reaction, the total heat
capacity of the solution rises above that for
the solution with no reaction, reaching a
maximum at the midpoint of the reaction,
and decreasing as the reaction goes to
completion. This is the simplest protein unfolding DSC trace.

T →

Cp

T →

Cp

T →

Cp

T →

Cp

Native Protein Soln
No denaturation

C
p
N=const

Denatured Protein Soln
All denatured

C
p
D=const

Mixed Protein Soln
denaturing
C

p
N=const

C
p
D=const

∆C
p
unfolding=0

Mixed Protein Soln
denaturing
C

p
N=const

C
p
D=const

∆C
p
unfolding=const

The
traces above show first two different solutions in which no reaction is occurring. As we discussed
previously, the solution with denatured protein typically has a higher heat capacity than that with native
protein. If the unfolding reaction had zero ∆H associated with it, we could simply use the change in heat
capacity of the solution as a function of the percent unfolded to monitor unfolding in the same way that
we used CD spectra or other techniques to monitor unfolding. An observable changes with protein
unfolding. This is shown in the third panel above.

Finally, if the reaction has an enthalpy associated with it, we observe a combination of these two
effects on heat capacity of the total solution illustrated at far right.

Derive an expression for total measured heat capacity as a function of the extent of the
reaction (which is a function of temperature).

Assume heat capacity independent of temperature!!
Assume that the heat capacity of a mixture of native and denatured protein is simply the

mole fraction weighted average of the two heat capacities.
Begin with the following parameters:

    

Cp
D =   molar heat capacity of a solution of denatured protein

Cp
N =   molar heat capacity of a solution of native protein

We also have given:

    

∆HTo
o =   molar enthalpy for unfolding of the protein at T = To

∆ST o

o =   molar entropy for unfolding of the protein at T = To

The total heat capacity for the solution is:

      

∆q
∆T

measured( )
= heat from heat capacity of denatured protein solution( )
+ heat from heat capacity of native protein solution( )
+ heat from that fraction of protein which denatured during ∆T( )
∆q
∆T

measured( ) = ƒD Cp
D + ƒN Cp

N + ∆ƒ ∆H
∆T( )[ protein ]

T →

Cp

T →

Cp

Protein Solution
No denaturation

Cp
N=const

Protein Solution
Cp

N=Cp
D=const

∆Cp
unfolding=const

∂q
∂T

=



Chem 728 Notes - 1998 Page 44

where we now remember that the enthalpy (∆H) is temperature dependent.
First, let’s determine the temperature dependence of ∆H, ∆S, ∆G, KD, and ƒ:

We know that:

  
∆H = ∆Cp T

      
ln K =

−∆H (T )
R

1
T( )

integrating from one temperature to another:

    
∆H

T1

T 2∫ = ∆Cp T
T 1

T 2∫       ∆HT2
− ∆HT1

= ∆Cp T 2 − T1( )         ∆HT = ∆HT o
+ ∆C p T − T o( )

Similarly,

      
∆S

T1

T 2∫ = ∆Cp
T
TT 1

T 2∫       ∆ST2
− ∆ST1

= ∆Cp ln
T2
T1

         ∆ST = ∆ST o
+ ∆Cp ln T

To
and

    

∆GT = ∆HT − T∆ST

∆GT = ∆HT o
+ ∆Cp T − T o( )[ ] − T ∆ST o

+ ∆Cp ln T
To

 
 
  

 
 

We can get the equilibrium constant, K from   K = e
−∆G

RT

So, we have the extent of the reaction given by ƒ (mole fraction protein unfolded), which can be
derived as:

      
K = [unfolded ]

[ folded ] = ƒ
1 − ƒ      so that    ƒ  =  K

1+K

Finally,

      

∆q
∆T

measured( ) = ƒCp
D + 1 − ƒ( )Cp

N + ∆ƒ ∆H
∆T( )[ protein ]

= ƒCp
D + Cp

N − ƒCp
N + ∆ƒ ∆H

∆T( )[ protein ]

= ƒ Cp
D − Cp

N( ) + Cp
N + ∆ƒ ∆H

∆T( )[protein ]

= ƒ∆Cp + Cp
N + ∆ƒ ∆H

∆T( )[protein ]

DNA Melting / Strand Association
DNA duplex formation/melting is particularly amenable to simple thermodynamics.

∆Cp = 0 for this process. Hence not only are basic assumptions held up, but ∆Ho and ∆So are
temperature independent.

Strand association appears to be dominated by “nucleation.” It can usually be treated as a simple
two-state process. Again, assumptions are valid.

Thermodynamics - Two non-self-complementary, complementary strands

    
S1 + S2 ← →   D         K = D

S1S2
Assume that when fully melted, S1 = S2 = So.
At any temperature, the fraction associated can be represented as α.

    

D = So         S1 = S2 = 1 −( )So

K =
So

1 −( )2 So
2

=
1 −( )2

1
So

Remembering 
      
∆HvH = RT 2 ln K

T

      

∆HvH = RT 2
T

ln − 2 ln 1 −( ) − lnSo[ ]
∆HvH = RT 2 1 + 2

1 −[ ] T
= RT 2 1 − + 2

1 −( )
 
  

 
  T

= RT 2 1 +
1 −( )

 
  

 
  T

At the Tm, α=1/2, such that

    

∆HvH = RTm
2

3
2

1
2

1
2

 

 
 
 

 

 
 
 T( )

T m

= 6 RTm
2

T( )
Tm

= −6R
1
T( )

 

 

 
  

 

 

 
  

T m

Plot α vs. 1/T and plot according to the above equation. This yields ∆HvH.
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Thermodynamics - Two self-complementary strands
as above, but now So = total conc of ss DNA

    

S1 + S2 = So          S1 = S2 = 1
2 1 −( )S o       D = 1

2 So

K =
1
2

So

1
2( )2

1 −( )2 So
2

=
1 −( )2

1
2So

as before:

      

∆HvH = RT 2
T

ln − 2 ln 1 −( ) − lnSo − ln 2[ ]
∆HvH = RT 2 1 + 2

1 −[ ] T
= RT 2 1 − + 2

1 −( )
 
  

 
  T

= RT 2 1 +
1 −( )

 
  

 
  T

Exactly as before.

Generalities
Given that ∆Cp=0, we can very simply extrapolate from a set of data

The temperature dependence of the equilibrium constant is given by:   
      
ln K = −∆H °

R
1
T − 1

Tm

 
 
  

 
 

And from this we can readily get to ∆G° and ∆S°.

Breslauer et al.
From Breslauer et al., Proc. Natl. Acad. Sci. U.S.A. 83, 3746-3750 (1986).

All data for DNA in 1 M NaCl, pH 7, 25°C

Dinucleotide Step         ∆H°      ∆S°     ∆G°
AA/TT TT/AA 9.1 24.0 1.9
AT/TA - 8.6 23.9 1.5
TA/AT - 6.0 16.9 0.9
CA/GT TG/AC 5.8 12.9 1.9
GT/CA AC/TG 6.5 17.3 1.3
CT/GA AG/TC 7.8 20.8 1.6
GA/CT TC/AG 5.6 13.5 1.6
CG/GC - 11.9 27.8 3.6
GC/CG - 11.1 26.7 3.1
GG/CC CC/GG 11.0 26.6 3.1

∆H° and ∆G° in kcal/mole;  ∆S° in cal/K/mole

For non-self-complementary, but complementary duplexes:   ∆Htotal = ≈0 + Σ ∆hx

For non-self-complementary, but complementary duplexes:   ∆Gtotal = -6 kcal/mole* + Σ ∆gx
*The free energy of duplex nucleation is estimated at -6 kcal/mole for non-self-complementary

duplexes and -5 kcal/mole for self-complementary duplexes. Empirically determined?

Example:        Duplex: CACTATA

∆Htotal =  0 + 5.8 + 6.5 + 7.8 + 6.0 + 8.6 + 6.0 = 40.7 kcal / mole
∆Gtotal = -6 + 1.9 + 1.3 + 1.6 + 0.9 + 1.5 + 0.9 =  2.1 kcal / mole

By this accounting, ∆S° should be (∆H° - ∆G°)/(298 K) = 129.5 cal / K / mole
Σ ∆sx = ∆sinit + 12.9 + 17.3 + 20.8 + 16.9 + 23.9 + 16.9 = ∆sinit + 35.1 cal / K / mole
Therefore  ∆sinit = 94.4 cal / K / mole

Also, this predicts: Tm = ∆H/∆S = 314 K  (41°C)
Can we use this to predict a Tm?
For equal concentrations of self-complementary strands:

      
S1 + S2 = So     S1 = S2 = 1

2 1 −( )So        D = 1
2 So      K =

1 −( )2
1

2So
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At the midpoint of the melting transition, α=1/2

    

KT m =
1

2

1 − 1
2( )2

1
2So

= 1
So

      
− RTm ln K Tm

= −RT m ln 1
So

 
 

 
 = ∆H − T m∆S

      

Tm = ∆H

∆S − R ln 1
S o

 
 

 
 

For equal concentrations of non-self-complementary, but complementary strands:

      

D = So         S1 = S2 = 1 −( )So      K = So

1 −( )2So
2

=
1 −( )2

1
So

At the midpoint of the melting transition, α=1/2

    

KT m =
1

2

1 − 1
2( )2

1
So

= 2
So

      
− RTm ln K Tm

= −RT m ln 2
So

 
 

 
 = ∆H − T m∆S  

      

Tm = ∆H

∆S − R ln 2
S o

 
 

 
 

      

Tm = ∆H

∆S − R ln 2
S o

 
 

 
 

= 40700cal / mol

129.5 cal / K / mol( ) − 1. 987cal / K / mol( ) ln 2
So

 
 

 
 

Assume [So]=20 nM, then 

      

Tm = 40700cal / mol

129. 5cal / K / mol( ) − 1. 987cal / K / mol( ) ln 2
10−8

 
 

 
 

However, remember our error analysis (This needs to be corrected slightly - see above):

    

Tm = ∆H
∆S

= T∆H
∆H − ∆G

∆Tm
2 = T

∆H − ∆G − T∆H

∆H − ∆G( )2
2

∆∆H 2 + −T∆H

∆H − ∆G( )2
2

∆∆G2

∆Tm
2 = −T∆G

∆H − ∆G( )2
2

∆∆H2 + − T∆H

∆H − ∆G( )2
2

∆∆G2

where ∆∆H and ∆∆G refer to the errors in our estimations of ∆H and ∆G, respectively.
Assume that they are: ∆∆H = 2 kcal/mole, ∆∆G = 1 kcal/mole

Then

      

∆Tm =
− 298( )2 .1

38.6( )2
2 +

− 298( )40. 7

38. 6( )2
1 = 0 . 84 + 8 .1 = 9 . 0K
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General Properties of Light and Matter  (VH 8; CS 7)
Range of energy:  spectroscopies and molecular processes

*CH  =CH   π→π  transition2 2

0

-1

-2

-3

-4

-5

-6

-7

-8

-9

1

-10

-11

Wavelength
(meters)

-13

-12

0

1

2

3

4

5

6

7

8

-1

Energy
(kcal/mol)

-2

-3

-4

γ- ray Mössbauer

X-ray X-ray diffraction, scattering

Vacuum UV
Near UV

Microwave

Microwave

Radio (RF)

Rotational Spectroscopy

EPR

NMR

Far IR

IR

Visible

peptide absorbance
DNA/RNA absorbance

tyrosine absorbance

kT:  room termperature

1H NMR at 500MHz

-5

excitation of electrons from inner 
shell orbitals to outer (unoccupied) 
orbitals or to the continuum

excitation of outer shell electrons 
(highest occupied) from one orbital 
to another (lowest unoccupied).

bond vibrations, bending modes
Vibrational Spectroscopy

bond rotational modes

kT:  boiling water

kT:  liquid nitrogen

kT:  liquid helium

C-H bond strength

hydrogen bond strength

R-O-H bend
C-H stretch

Cu(I)   1s→4s  transition

very high energies - electrons from inner to extreme outer shells or to continuum
x-rays:  scattering from atomic centers
UV:  excitation of electrons from one orbital to another
visible:  excitation of electrons from one "big" orbital to another
IR:  bond vibrations, bends
microwave:  bond rotational modes,  EPR
RF:  nuclear magnetic resonance

“Light” and energy

  E = h = hc
h = 6.63 x 10-27 erg s c = 3.0 x 1010 cm s-1 No = 6.02 x 1023 mole-1

me = 9.11 x 10-28 g;  k = 1.38 x 10-16 erg K-1 R = Nok = 1.987 cal mol-1 K-1

erg = g cm2 s-2 cal = 4.18 x 107 erg / h = 2πh       ν = 2π ω
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Plane-polarized radiation

λ

Electromagnetic radiation (“light”) composed of electrical and magnetic
components.

E and B components are perpendicular and vary in space with time.  Light can be
represented as a spatial “wave.”  Frequency of oscillation is ν, and wavelength λ.

picture here....
This is the classical representation and we will mostly stick with this kind of
explanation, however, there are times when classical analogies fail, and only quantum
mechanics will correctly predict nature.

Quantization of energy - only discrete states available

Energy
Classical: can be 

anywhere on the hill.  
Any energy "state" 

availableQuantum: can only be at 
specific places on the hill.  

Energy "states" are 
quantized (discrete)

Energy
Quantum mechanics tells us that systems can only exist in discrete states.
There is no classical analogy here.
In classical mechanics, a spring of a specified length, width, and physical makeup can
vibrate at any of an infinite number of frequencies.  In quantum mechanics only
discrete states are available, which are defined by the physical properties of the spring.
Since states are discrete, energy gaps are discrete, and spectroscopic band widths would
be very narrow, but heterogeneity in sample and environment broadens most bands
significantly.

Each component in an ensemble has a discrete transition energy, but heterogeneity
within the ensemble of microsystems results in a broad band associated with the
macrosystem.
Later:  Dynamics will also be seen to effect linewidths.
We will also see later that spin states of nuclei and electrons are also quantized (“up”
and “down”).

Brief summary of quantum mechanics
The state of a system (atom, molecule) is described by a wave function

ψ(x,y,z,spin,t) (ψ is, in general, a complex function - imaginary numbers...)
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The probability of finding the system at a particular set of conditions of a state is given
by the product of ψ and its complex conjugate ψ*.    P = ψ ψ*

The probability of the system being “anywhere” in state ψ is determined by averaging
over all conditions of that state:  P(t)  =  ∫ P dx dy dz d(spin)  =  ∫ ψ ψ* dτ.  Because QM
tells us that systems exist discretely in a given state, then ∫ ψ ψ* dτ  =  <ψ|ψ> =  1.  (dτ
means “over all space - dx dy dz)

Operators - The Result of a Measurement
An observable quantity (e.g. energy, dipole moment, location in space) is governed by a
mathematical device known as an operator.
The Hamiltonian H is used to describe the energy of a state.
The result of a measurement on a state (e.g. measure the energy) can be calculated by
taking the average value of the operator operating on that state:  the expectation value.

⌡⌠

-∞

∞
 ⌡⌠

-∞

∞
 ⌡⌠

-∞

∞
 ψ H ψ∗ dx dy dz  =  ⌡⌠ψ H ψ∗ dτ  =  E in other words, <ψ|H|ψ> =  E

A transition between two states can be induced by a perturbation.
The effectiveness of this induction is governed by the extent to which the perturbation
can deform the initial state to make it resemble the final state (i.e., mix the states)
Assume a perturbation which can mix states, described as a potential V.  The
expectation that it will induce a system in state ψ1 to effect a transition to state ψ2 is
given by
       P(mixing)  =  <ψ2|V|ψ1>   remember that as V|ψ1  ψ2, then this goes to <ψ2|ψ2>
= 1

Light can be a perturbation
The ability of light to induce transitions can be calculated by its ability to induce dipole
moments that oscillate with the light.
The electric component of light can induce dipoles in electronic states.
In this case, the probability of an electric vector µ inducing a transition is <ψ2|µ|ψ1>

Perturbations have a directionality
The preferred directions for inducing dipole moments are determined by and fixed with
respect to the geometry of the molecule.
ψ is a function of space (x,y,z), as is µ, therefore the ability of the electric dipole (vector)
to induce transitions is dependent on their relative geometries.

Light can induce transitions between states   (CS 7.1)
Energy match is required

Probability of light-induced transition is related to the matching of the light energy to
the energy difference between levels
From quantum mechanics, the probability of a system initially in state a being found in
state b (ie. a→b) is given by the following:

Pb = |Cb(t)|2 =
|<ψb|µ|ψa>•Eo|2

/h2
t2 sin2[((Eb-Ea)//h -  ω)   t / 2]

2[((Eb-Ea)//h - ω ) t / 2]2

as this term → 0,

Pb → 1

µ induces a dipole in state a,
perturbing it to "resemble" state b.

This term reflects this ability.

where µ is the electric dipole operator, Eo is the electric field (a vector), and Eb and Ea
are the energies of systems in states ψb and ψa, respectively.

Note that since / hω  is the energy of the light, transitions from a to b will be most likely

when the denominator ((Eb-Ea)// h - ω) is small, that is when
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hν = / hω = Eb-Ea energy of light matches energy difference between states

The amount of net light absorption is dependent on the number of molecules in
each state

It can be shown that for radiation centered at frequency ν, the rate at which molecules
are transformed from state a to state b is given by

dPb
dt   = 

d
dt 

⌡⌠dν |Cb(t)|2   = 
1

2/h2
  |<ψb|µ|ψa> • Eo|2    

for polarized light; a specific orientation of the molecule, and single frequency ν.

More generally, integrating over all orientations, it can be shown that

|<ψb|µ|ψa> • Eo|2  =  (1/3)  |<ψb|µ    |ψa>|2  |Eo|2      

then
dPb

dt   = 
1

6/h2
  |<ψb|µ|ψa> |2 |Eo|2

From classical E & M:

I (ν) = 
|Eo|2

4π  Intensity:  energy density incident on the sample at                   

frequency ν

We can then define

Bab = 
2
3 /h2

   |<ψb|µ|ψa>|2  transition rate (a→b) per unit energy density    

So that
dPb
dt    =   Bab  I (ν) the two components are separable

Note: V = k [C] analogy to a first order kinetic “reaction”
This result is for any system initially in state a.  It defines the probability of finding
that system in state b at some time t (as a result of interaction of the system with the
electric field component of the light.  It contains two components:  1) Bab, the transition
rate (analogous to a chemical rate constant) and 2) I(ν), the energy density, or intensity,
of the light - roughly the density of photons hitting the sample (analogous to
“concentration of photons”).  Note that at this point we have said nothing about which
state is higher in energy.
A similar expression can be written for the transition from state b to state a.  So that
light is both emitted and absorbed.  The net change then depends on the population of
each level, such that the net absorption of light can be written as:

- 
dI(ν)

dt   = hν (NaBab - NbBba)  I (ν) The rate at which energy is removed from the

light
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where hν = Eb - Ea  (the energy of the transition between states)
For simple cases of interest to us, the Einstein coefficients Bab = Bba, so that

- 
dI(ν)

dt   = hν (Na - Nb)  Bab  I (ν) ← N.B.

Thus, through the factors Na and Nb, light absorption depends not only on the
concentration of the species, but also on the difference in population between the levels.
A very important result of this is that no matter how much light you shine on the
system, the most you can ever do is equally populate each of the levels.  You can not
(without getting fancy) “pump” all of the systems from state a to state b.  We will see
this later.

Light induces dipoles in molecules
Bab  <ψb|µ|ψa>  =  the dipole moment induced by the light  =  transition dipole
moment
Classically, electromagnetic radiation (light) possesses an electric field component, Eo
above.  Since light is an oscillating wave, the electric field also oscillates.  The
oscillating field  can then interact with an existing dipole or induce an oscillating dipole
in the molecule, µ above.
The integral <ψb|µ|ψa> (transition dipole moment, it is a vector) describes the ability of
light to distort a molecule in state a so as to produce a system which resembles state b.
Oscillations have a time component, and so have phase.  This will be important when
two dipoles are simultaneously excited.  Relative phases important.

Transitions induced in both directions equally.
Purely a result of quantum mechanics
Net absorption usually observed, due to population of states (see below).

Dipole-dipole interaction (CS p. 263-265)

R

θ

The interaction energy for two point dipoles is given by:

Ed = ε-1 [ 
µA • µB

r3   - 
3 ( µA •  r) (µA •  r)

r5    ]

In this point dipole approximation, the charge separation (distance) within each dipole
is assumed to be much smaller than the distance separating the two dipoles.  This is not
necessarily true in chemical systems, but a more rigorous calculation is generally
prohibitive.  A further approximation is generally made in dropping the second term in
the equation.  This assumption is generally not too bad.
Note that the dielectric constant, ε, is involved.  Pictorially, this means that if the
intervening medium has its own dipoles between the two point dipoles, their effect will
lessen the interaction between the two dipoles.
Note also that there is an angular dependence, such that dipoles oriented 90° with
respect to one another have no interaction energy.
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Finally, the large distance dependence (
1
r3 ) in this equation shows that only near

neighbor atoms in a molecule interact substantially.

Boltzmann distribution  (VH 2; CS 8.2)

Boltzmann equation specifies thermal distribution:

nb = na e
-(Eb -Ea)

kT  
nb
na

  = e
- E
kT  

Thermal energy allows for transitions between states, but this is, of course, limited by
the energy separation of the states relative to the thermal energy (ie. the temperature).
The temperature equivalent of photons are called phonons.  Thermal energy (the
phonon bath) generally spans a wide range of energies, and so heat can usually bring a
system to thermal equilibration.

Implications:
For states separated by substantial energy gap, lower energy state will be exclusively
populated, i.e.   as ∆E→∞,   nb/na→0.
For closely spaced states, populations can be almost evenly distributed, i.e.   as ∆E→0,
nb/na→1.
Temperature dependence:  as T→0 (Κ), high energy states depopulated, nb/na→0.

Optical Spectroscopies

Absorption Spectroscopy
Beer-Lambert Law (CS 7.2)

The fraction of light absorbed:
-∆I
I   = C ε’ ∆l

-dI
I   = C ε’ dl

⌡
⌠

Io

I
-dI
I   = ⌡⌠

0

l
C ε’ dl 

ln 
Io
I   = C ε’ l

log 
Io
I   = C ε l

A(λ) = log 
Io
I   = C ε(λ) l ε, extinction coeff units (M-1 cm-1,  (mg/ml)-1 cm-1)

Note that ε is a function of wavelength.  ε(λ).
Always pay attention to units!!  Always specify units, but when others don’t, assume M-1

cm-1.

I Io

l

∆l
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Electronic transitions - geometry of states and the time scale of the transition
Idea of two states - "molecular
geometry" axis

molecular geometry generally is the
positions of all atoms and the spin
states of the nuclei and electrons.

More typically, one aspect dominates a
given transition.  For example, in
ethylene, the molecular geometry might
be simplified to the carbon-carbon
internuclear distance.  For the case in
which the π bond is fully occupied, there
is a preferred internuclear separation
(short - double bond).  For the case in
which one electron has been promoted to
the π* orbital, the preferred internuclear
separation will be larger (longer - one
and one half bond).

Frank-Condon/Born-Oppenheimer:
electrons move much faster than nuclei.  Nuclei do not move during an electronic
transition.  They subsequently relax to preferred position.  The arrows above indicate
that the molecule first absorbs a photon of light to promote the electron, after which the
nuclei move to the preferred configuration.

Vibration and rotation are included in the precise definition of the molecular
“state”

Vibrational sublevels (quantized) exist for
each electronic state.
Rotational sublevels (quantized) exist for
each vibrational state.
Excited vibrational states are usually not
well-populated in the ground state, but
transitions to excited vibrational levels
within the excited electron states are likely.
Excited ground state rotational levels are
often significantly populated, but...
Normally the linewidth of the electronic
transition due to the inherent heterogeneity
of the states makes resolution of vibronic and
rotational levels impossible.  In these cases, the sublevels are ignored and we speak of
the system in electronic terms only.

Particle in a box:  energy levels in delocalized systems
(Not in book...)

En = 
n2h2

8med2     n=1,2,3,4...    (me = mass of the

electron)
Note that the size of energy gap between the levels is
inversely proportional to the square of the size of the
box, d.
Also note to always count the total number of
electrons and fill the lowest levels first.  The lowest
energy transition will then be from the highest
occupied orbital (HOMO) to the lowest unoccupied
orbital (LUMO).
Back to ethylene.  Expansion of conjugated system

Molecular Geometry

C C

π π ∗

C C

π π ∗

Molecular Geometry

Vibrational levels
{

{

{

Rotational
levels

E

4E

9E

n=1

n=2

n=3

En  = 
n2h2

8md 2    

d
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lowers energy, as predicted.

175 nm

ε=15,000 M -1 cm-1
217 nm

ε=21,000 M -1 cm-1
258 nm

ε=35,000 M -1 cm-1

Using the equation above, we can calculate the size of the “box” for the case of ethylene.
Noting that each level can contain two electrons (Pauli exclusion principle), we find that
the n=1 state is fully populated and that the lowest energy transition will be from n=1
to n=2.  The difference in energy, E2 - E1, can be obtained from the observed wavelength
of the transition, finally yielding d = 3.99 Å.

C C
1.34 Å

3.99 Å

1.32 Å 1.32 Å

Since we know that the carbon-carbon distance for a double bond is 1.34 Å, the box
must extend 1.32 Å on either side.

distances for other boxes are 4.44 Å and 4.84 Å.
There are many examples in biology of large π systems:  nucleic acid bases, porphyrins,
visual and pigment chromophores, ...   Building a “bigger box” is nature’s way of
bringing absorptions into the “visual” region of the spectrum, or rather, of bringing
“vision” out from under the opaqueness of the UV region of the biological spectrum.

452 nm      ε = 15.2 x 104  M-1 cm-1

β-carotene   (found in carrots)

The peptide bond can also be thought of as a “box.”  Note
that there is a π system extending from the carbonyl oxygen,
through its carbon, and across to nitrogen.  Delocalization
onto the electronegative oxygen and into its and nitrogen’s
lone pairs, makes the box bigger than you might first think.
Note that there are two transitions in the UV region, but
that one is much more allowed than the other.  The
absorption at 190 nm is more commonly monitored,
although it is getting very close to the vacuum region of the
UV where everything absorbs.
We now have a qualitative feel for transition energies (the wavelength of the
transition).  What about the probability of a transition?

H

N

O HR2

R1 OH

Peptide Bond
π→π*  190 nm ε≈7,000 M-1 cm-1

n→π*  220 nm ε≈200 M-1 cm-1
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Symmetry dictates transition probabilities:  Formaldehyde as a simple model.
(CS p. 370)

We’ve learned about geometrical constraints on transition energies ( → absorption
wavelength).  What about transition probabilities ( → absorption intensities)?

*

n

*

n

*

n
  * n  *

2px

2pz 2pz

2py

*

C OC O

OC C O

Z
y

x

sp2

An sp2 hybridized carbon can combine with a simple unhybridized oxygen to form π and
π* orbitals.
The ground state of formaldehyde can be represented as n2π2 (highest occupied orbitals
only).
Remember that the formula for the transition probability contains the term
|<ψb|µ|ψa> , and note that this term is an integral over all space.  If the integrand has
odd symmetry, the integral will go to zero, whereas if it has even symmetry, the
integral will be non-zero.  We can examine the symmetry of each orbital and of each of
the electric dipole operators associated with the light.
The following illustrates this property of integration:

-1.1

-0.6

0

0.6

1.1

0 90 180 270 360

Sin (θ)

Positive area under curve is 
canceled by equal negative area

-1.1

-0.6

0

0.6

1.1

-1.1

-0.6

0

0.6

1.1

0 90 180 270

Sin 2(θ)
Area under each part of 
curve is positive.  They add.
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Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

xy xz yz

even evenodd

odd even odd

even odd even

even even odd µ
x

even

odd

odd

even

even

even

µy

µz

+

+

-

-+

-

+

-

Symmetry

π

π*

n

reflected through plane

z y x along axis

Formaldehyde
CH  O2
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<ψi|µ|ψf> = <ψi|µx|ψf> + < ψi|µy|ψf> + < ψi|µz|ψf>

∫ψi µx ψf ∂x∂y∂z + ∫ψi µy ψf ∂x∂y∂z + ∫ψi µz ψf ∂x∂y∂z

<π|µ|π*> = <π|µx|π*> + < π|µy|π*> + < π|µz|π*>

[(oeo)(eee)(eoo)] + + [(ooo)(eee)(eeo)][(oeo)(eoe)(eeo)]

non-zero + 0 + 0

≠  0   (allowed)

<n|µ|π*> = <n|µx|π*> + <n|µ y|π*> + <n|µ z|π*>

+ [( +[(eeo)(oee)(eoo)] [(eeo)(ooe)(eeo)] [(eoo)(oee)(eeo)]

0 + 0 + 0

=  0   (forbidden)

0 0 0 0

000000

∫∫∫∫ ∫∫

Aromatic groups can be more complicated, but nevertheless, symmetry is often very
important.  Extinction coefficient depends on symmetry.  Benzene is “too symmetrical.”
A dipole does not exist and is not easily induced.  Consequently the transition
probability (and therefore the extinction coefficient) is very small.

Introduction of the hydroxyl
group in phenol, breaks the
symmetry in one plane,
producing a dipole in the
molecule.  The extinction goes
up dramatically.

The amino acids phenylalanine and tyrosine are analogous to benzene and phenol.  The
effects of symmetry are similarly illustrated.

Phenylalanine

250 nm    ε = 200 M-1 cm-1
Tyrosine

274 nm    ε = 1,400 M-1 cm-1

NHR

RCO

NHR

RCO
OH

Tryptophan

3 transitions 240-290 nm

ε280 = 5,700 M-1 cm-1

N

H

NHR

RCO

Tryptophan is more complex.  In particular, there are three transitions in the region of
the UV spectrum from 240 to 290, each with its own characteristic extinction.  The net
absorption “band” represents the sum of these transitions.  The quoted extinction
coefficient does not reflect one single transition.
Nucleic acids are similarly “big boxes.”  The spectra of several nucleotides actually show
the composite nature of the absorption band, as shoulders on the main envelope can be
seen.  The sugar and phosphate components have negligible effect, but base-base
interactions can have significant effects (we’ll see later).

Benzene

256 nm    ε = 400 M-1 cm-1
Phenol

271 nm    ε = 2,000 M-1 cm-1

OH
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adenine

259 nm

ε = 15,400 M-1 cm-1

N

N N

N

N
HH

guanine

253 nm

ε = 13,700 M-1 cm-1

N

N N

N

N

H

H

O
H

uracil

262 nm

ε = 10,000 M-1 cm-1

N N

O

O

H

cytidine

271 nm

ε = 9,000 M-1 cm-1

N N

O

N

H

H

thymidine

267 nm

ε = 9,600 M-1 cm-1

N N

O

O

H

Structure from spectroscopy - whole not the sum of the parts.
Solvent effects

If you know something about the nature of a transition, you can often
predict the effect of solvent on the absorption properties of a
chromophore.  In general, solvent interactions     stabilize both the
excited and the ground      states.  If this effect is equal for the two, the
energy of the transition will not change.

Solvent polarizability     is important.  If a particular electronic state is
characterized by a large dipole moment, then a highly polarizable
solvent will stabilize that state more than a less polarizable solvent.
N.B.

Note in the structures at right for ethylene: the π* orbital is more
diffuse than the π orbital.  Consequently it will have a larger inducible dipole moment.  The π*

orbital will be stabilized more than the π orbital by interaction with a polarizable solvent.
Example:  mesityl oxide (CS p. 387).

n→π*π→π*

Solvent λmax λmax (nm)
Hexane 230 327
Ethanol 237 315
Water 245 305

π *

π

n

P
ol

ar

N
on

-p
ol

ar

CH 3

CH 3

CH 3

O

Red shifted
Blue shifted

(Note: the book is wrong!)
As for formaldehyde, 3 energy levels dominate the low energy transitions, yielding π→π* and  n→π*

transitions.  Look at solvent polarizability.
The electron in the     π orbital    is localized primarily between the involved nuclei.

In contrast, the     π    *    orbital        is more diffuse and extends well beyond the central nuclei, consequently

one expects the π* orbital to be influenced much more by solvent than the π orbital.  In particular, a
more polar solvent should stabilize the dipole in the π* orbital much more than it stabilizes the π
orbital - this leads to a reduction in their energy separation so that the π→π* absorption will shift to
lower energy (longer wavelengths - to the red) in a more polar solvent.

An electron in a      non-bonding orbital    (for the simplest case, a lone pair) is readily available for
interactions with solvent (e.g. as a H-bond acceptor).  Therefore we expect the shift to be even larger
for the n→π*, however in this case the ground state is stabilized relative to the excited state, so that
the difference in energy between the two states will increase (the transition will move to lower
wavelength - a blue shift).

Solvent perturbation spectroscopy.
In limited cases, one can monitor     exposed     surface amino acids by their response to changing solvent.

Amino acids such as tyrosine and tryptophan which are exposed to solvent will show well
characterized shifts as the polarity of the solvent is reduced (by addition of alcohol for example).  In
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π π ∗
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contrast, buried residues may be relatively insulated from changes in the solvent.  In ideal cases,
this can be used to determine the number of each type of aromatic residue exposed to solvent.

More interestingly, if a protein undergoes a major     conformational reorganization     , previously buried
groups may become exposed to solvent and vice versa.  This will be observed as an abrupt change in
the spectrum accompanying the conformational change.

An extreme example of this is the change in the exposure of buried aromatic residues accompanying
the      unfolding     of a native protein structure.  In fact, this approach is used in many studies of
thermal denaturation (although calorimetry provides more information).

The environment in a protein can vary dramatically.
The local environment that a given electron sees is very dependent on the environment and is usually

quite anisotropic (not homogeneous).  By this we mean that polarizability and the distribution of
dipoles is not uniformly distributed around a point in space, as in solution.  One end of an electronic
orbital may be situated near a carbonyl oxygen from the peptide bond, while the other end is in
close proximity to a hydrophobic methyl group from alanine.  Thus it is very difficult to predict
quantitatively the energy levels within a protein from studies of solvent shifts.

Protonation state can significantly effect absorption maxima, extinction
coefficients.

Tyrosine has a pKa of 10.9.  Deprotonation leads to a significant shift in the absorption maximum
towards the red.  This can be exploited to titrate Tyr residues in a protein.

For nucleic acid bases, protonation of C or G leads to large red shifts.  Deprotonation of U or T also
results in a large red shift.  Protonation of A leads to a small change.

Interactions between chromophores - the exciton effect.
For a theoretical description, see CS 390-395.
What happens when we have two identical chromophores?  For two non-interacting
monomeric chromophores, the result is intuitively obvious - the resulting spectrum is
that of the monomer, but with twice the intensity.
For two interacting monomers, we again note that in general the
ground states of a molecule are less polar than the excited states.
Consequently excited states of molecules can interact with each
other through dipolar interactions, in the same way that the excited
state of a monomer interacts with polar solvent.  The result is that
the energies of the ground states for the monomers are effected much
less by their interaction than are the energies of their excited states.
Combining the excited states in much the same way as one combines atomic orbitals to
form molecular orbitals, we see that the two resulting excited states are equally higher
and lower in energy than the excited state of the non-interacting monomer.  In equation
form:

ν+ = νo + V12 ν-= νo - V12 2V12 is called the exciton splitting.
The interaction energy V12 depends on various factors, but to a first approximation falls
of as R12

3 (that is, it falls off rapidly with distance).
Similarly, it can be shown that the relative intensity of each transition is split about the
original intensity (i.e. I+ + I- = 2Io), but their  relative intensities depend on  the angle
between the two transition dipoles, θ

D± = Do ± Do cos θ          See page 396 in CS for a description of this effect.
Interactions between identical dimers.

The spectrum of two identical and non-interacting chromophores is simply the spectrum
of one, but with twice the intensity.
We saw above that the ground and excited states of different molecules can interact
with each other. What happens when two identical chromophores interact?  One
important feature of such an interaction can be seen when we consider the transition
dipole vector of each chromophore.  The interaction has a strong angular dependence
(the dipole-dipole interaction).

Monomer Monomer

Dimer

νo ν-
ν+
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The intensities and the splittings depend on the angle θ; the intensity of the resulting
band is proportional to the magnitude of the vector resulting from the addition (or
subtraction) of the contributing transition dipole vectors.
So we see that chromophores can interact positively or negatively, resulting in split
transitions, not necessarily of the same intensity.

Extension to systems of more than two chromophores.
By analogy, we see that 3 interacting monomers will give rise to 3 absorption bands,
and so on for larger groups of interactions.  What happens for a very long polymer?  For
a regular structure such as an α-helix, symmetry considerations require that almost all
of the bands will have zero intensity.  Only two allowed π→π* transitions remain:  1
parallel to the helix axis and 1 perpendicular.

Example: (CS p. 369) oriented poly-L-glutamic acid film.  The molecule forms long α-helices which
align parallel to one another.  Measurement of absorption spectra using light polarized parallel or
perpendicular to the helix axis shows distinctly different absorption maxima and extinction
coefficients.

Hypochromism (less color):  interaction between different transitions in
different molecules.

Simplistically, for a long polymer of interacting monomers, the overall integrated
absorption intensity should be the sum of that of the individual monomers.  This is
often not true, as displayed in DNA.  The intact double helix absorbs 30% less than a
mixture of the same monomers.  The best explanation of the effect, by Tinoco and
Rhodes, is (according to CS) “not simple.”

So far, when looking at monomer-monomer interactions, we have considered interactions between two
identical transitions within each monomer.  But      a transition in one monomer can be influenced by
other        transitions in its neighbor    .

Very simplistically, we can see the effect as the effects of induced dipoles.  Remember that an electric
field will induce a dipole in each orbital’s electronic clouds.  If such dipoles are all aligned parallel to
each other as shown in the first case below, there will be a mutual repulsion.  This makes the
induction of each dipole more difficult.
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Hypochromism

Hyperchromism

Similarly, if the dipoles are aligned as in the lower figure, there will be a mutual attraction, making
the induction of dipoles easier.  We can now see that in the first case, the transition probability will
be     reduced     (extinction coefficient smaller -      hypo     (under)), while in the second case it will be
increased     (extinction coefficient larger -      hyper     (over)),.

Since this is a      dipole-dipole     interaction, the strength of the interaction goes as 1/r3.   The
chromophores must be relatively close in space.  As we saw above, the angle of the chromophores’
transition dipoles is also critical.  It also requires a      polarizability      in both molecules.

The former case (hypochromism) occurs for duplexes of DNA, hence we observe a hypochromic
decrease in the extinction coefficient for duplex DNA vs. melted DNA (or the component free
nucleotides).

Fluorescence and Phosphorescence Spectroscopies
Introduction - emissive transitions

Review:  We saw before that when a molecule
in the ground vibronic level of the ground
state is influenced by light of the appropriate
energy, transitions are induced between that
state and higher lying excited electronic
states.  We also saw that during the time
course of the electronic excitation, nuclei
don’t move appreciably.  Consequently
excitation is often to excited vibronic and
rotational levels within the molecule.

Non-radiative and radiative processes
The excitation from So to S1 is a radiative
absorption.  Radiative: involving light.
Subsequent to this excitation, the molecule
relaxes to the ground vibronic (and rotational) sublevels within the excited electronic
state.  This process is non-radiative, that is, it is not associated with light energy, but
rather represents a transfer of thermal energy to the surroundings.  For example, a
diatomic molecule in an excited vibrational state may collide with a solvent molecule
and transfer that vibrational energy to the solvent molecule.
The resulting molecule, in its ground vibronic
sublevel within the excited electronic level, may now
emit a photon of light and spontaneously revert to the
ground electronic state So (fluorescence - a
radiative emission process).  But again, the electronic
transition is faster than the movement of nuclei, so
that it relaxes to an excited vibronic sublevel of the
ground electronic state.  Consequently, light emitted
in fluorescence is always of lower energy than that
originally absorbed.
Note that there exist pathways for non-radiative transitions between electronic energy
levels.  It is due to these processes that we can rarely excite enough molecules between
states (with illumination at the transition energy) that we equalize the populations in
the two electronic states.  In fact, with most spectroscopies, the populations of the
individual levels remain very close to their Boltzmann distributions, despite our
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induction of transitions between states.  Non-radiative pathways predominate over
radiative ones.
Another non-radiative process which can
occur is called inter-system crossing.  In
this process, the singlet excited state is
converted into a triplet.  Remember that
during the initial absorption transition,
we took an electron from a fully occupied
and therefore spin-paired level (a singlet
level).  During that transition the spin
does not change, so that the resulting
excited state is still a singlet.  However,
in this excited state, the two electrons
are in singly occupied orbitals.  We know
that the triplet state will always be
lower in energy (with both spins aligned,
we say they are more correlated and
stay away from each other better - see
an introductory quantum mechanics
text).
Such a transition, however, is formally forbidden (remember that there must be a
mechanism to induce the transition), so that the rate of intersystem crossing is
generally very slow.  For systems that do make this transition, the relaxation back to
the original singlet ground state is also formally forbidden, so that the lifetime of the
triplet state can be much longer than that of the corresponding excited singlet state.
The radiative transition back to the singlet ground state is called phosphorescence.
In the case that non-radiative pathways between electronic states (internal conversion
and intersystem crossing) are slow relative to the rate of spontaneous emission,
fluorescence and/or phosphorescence can be observed.
Radiative processes summary:

absorption - as discussed previously
fluorescence - transition back to the ground electronic state, with emission of a photon of the

corresponding energy.
phosphorescence - transition from an excited triplet back down to the ground state singlet, with

emission of a photon of the corresponding energy.  This transition is formally forbidden, so that for
most systems the rate of this transition is very low - the triplet state once generated has a much
longer life time in general than does the excited singlet state.

Non-radiative processes summary:
vibrational relaxation (v.r.):  transitions with the vibronic sublevels of an electronic state.  The

transition energies are usually near kT for room temperature.  The rate of such transitions is
generally very high (t1/2 = 10-12 sec).

internal conversion:  occurring at a rate kic.  The associated energy released is transmitted to the
environment via non-radiative energy transfer, such as collision with solvent or with other
molecules.  In general kic will increase with temperature (at the expense of other transitions, such
as fluorescence and phosphorescence).

intersystem crossing:  in this case a formally forbidden “spin flip” converts the system from a
singlet state (all electrons paired) to a triplet (a system with a net electron spin of 1).  Note that
direct excitation from the ground state singlet to the excited state triplet is strongly forbidden.

quenching:  like internal conversion, this processes often derives from processes such as molecular
collisions (or chemical reaction), but in this case the energy transfer is large enough to lead to
transitions between electronic states of the molecule.  See below for more.

Excited Electronic State Lifetimes
Singlet excited state (S1):  Generally the rate of spontaneous emission from this state is fast.

Consequently, the lifetime of this state is very short (typically  t1/2 = 10-12 sec).
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Triplet excited state (T1):   Since the transitions back down to the singlet ground state are formally
forbidden, the lifetime of this state is significantly longer than rates for transitions from singlet to
singlet).

Quantum yield
Each process of “deexcitation” has associated

with it a     rate constant    .  The relative yield
of each pathway depends critically on the
rates of each of these processes.  The
quantum yield for a particular pathway is
defined as the ratio of the rate of that
pathway to the sum of the rates for all pathways from that state (or, alternatively, the denominator
can be expressed as the rate of excitation to that state).

In other words, the quantum yield for fluorescence is the ratio of the photons emitted in fluorescence
to the photons absorbed by the original transition.

φF = 
kF

kF + kic + kis + kq[Q]
   =   

deexcitation via fluorescence
all deexcitation

   =  
photons emitted

photons absorbed
 

It is the latter description of quantum yield that is typically measured experimentally.

The fluorescence experiment
Experimentally, fluorescence is a very
sensitive technique.  In absorption, we
detect the light which passes through the
sample.  In a very dilute solution, we may
have 0.01% of the light absorbed, such that
the light that passes through may represent
99.99% of the incident light.  Consequently,
the absorption measurement is a very small
difference of two much larger numbers.  In
fluorescence, we directly detect the emitted
photons in the absence of any other light.
This is a much more sensitive
measurement.
In the fluorescence experiment we can
record both the absorption spectrum and the
emission spectrum.  In both cases, we
measure the emitted light.
1)  Fluorescence excitation.  In the first
case, we set the emission monochrometer to
the wavelength of the fluorescence emission maximum and scan the excitation
monochrometer.
2)  Fluorescence emission.  In the second case, we excite with only light
corresponding to the maximum excitation, and then we scan the emission
monochrometer.
In practice, for an unknown sample, one must iterate back and forth between these
approaches to determine the maxima for both excitation and emission.
Within an electronic transition, the largest signal will generally be lowest in energy and
will correspond to transitions from the lowest vibronic level of the ground state
(excitation) to the lowest vibronic level of the excited electronic state.

Internal Conversion
In internal conversion, a molecule in an excited vibrational state can collide with a
solvent molecule, transferring its energy to the solvent molecule and reverting to a
lower energy vibronic level.  The solvent molecule gains kinetic energy (it is “heated”).

φi = 
ki

∑
j=1

n
kj 

   =   
ki

kall dexcitation
   =   

ki
kexcitation
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Quenching via Chemistry
The energy difference between the ground and excited states (the excitation energy) can
be used to perform chemistry.  A second molecule can interact with the excited state of
the absorber, so as to allow relaxation of the absorber coupled to the input energy into a
chemical reaction involving the quencher.  This type of reaction will generally show a
dependence on the concentration of the quenching molecule (as well as the absorber).
Studying the concentration dependence of the quenching can provide support for and
further information on the quenching mechanism.
A variation of quenching is direct chemistry involving the absorber.  The excited state of
a molecule is chemically different, often being characterized by weakened bond
character.  As an example, in ethylene the π → π* transition takes a system with a
double bond between carbon, and converts it to a system with a net single bond between
carbons.  In more complex systems, if other stresses pre-exist which strain that single
bond, the reduction in bonding associated with the π → π*  transition might lead to bond
cleavage.
It is this mechanism which is usually exploited in “photo-bleaching.”  The product of the
chemical reaction no longer has the absorption properties of the original “reactant.”  We
will mention this later.

Transfer of excitation energy
Finally, a molecule in an excited electronic state can transfer its excitation energy to
another molecule.  In the process, the donor molecule relaxes from the its excited to its
ground electronic state, while the acceptor molecule is excited from the ground to its
excited electronic state.  We can write the efficiency of transfer as

E  =  
kT

kT +  kF +  k ic +  k is  where kF, kic, and  kis are properties of the donor.

For appreciable transfer of energy, two requirements hold:
1)  A mechanism for transfer must exist.

Typically, a dipole-dipole interaction can lead to a coupled transition between electronic states.  The
dipole of the donor’s excited state can interact with the ground state of the absorber in a manner
similar to the interaction of light’s electric field with the ground state of the absorber.  In the
quenching pathway of energy transfer, the donor is de-excited to the lower electronic state, while
the acceptor is excited to its higher excited electronic state.

2)  The involved energies must match (as for light (E) induced transitions).
Re-stated:  there must be an appreciable overlap of the

fluorescence spectrum of the donor and the absorption
spectrum of the acceptor.

A quantitative theory for such energy transfer has
been developed by T. Förster (see CS 451-453).  In
this theory, the rate of energy transfer is given by

kT = 
1
τD

 (
Ro

R ) 
6

τD =  
1

kF + kic + kis
 

NOTE: Cantor & Schimmel is wrong for kT!!
where τD is the lifetime of the donor in the absence of
the acceptor, R is the distance between donor and acceptor.
Ro is a factor called the “characteristic transfer distance.”  It contains contributions
from

1) the spectral overlap between donor and acceptor (energies match)
2) the refractive index of the medium between the two
3) the orientation of the two with respect to each other - dipoles must be able to interact with each

other (this component can average out for rapidly tumbling molecules).
Note that the distance, R, comes into this equation as the inverse of the 6th power.  This
is due to the fact that coupling mechanism is a dipole-dipole interaction.  The leading
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term in the dipole-dipole interaction is dependent on R3, and this term is squared in
computing the transition probability.

If we rewrite the efficiency of energy transfer as E  =  
kT

kT + 1/τD  

then substituting for kT from before:

and substitute in for kT, then we have      E  =   
R

6
0

R
6
0+R

6
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R0  = 20 Å

It can be seen that this is most sensitive for distances R near Ro.  Values of Ro  typically
range from 10 � Å to >50 Å.  Distances between chromophores of as much as 80 Å
between chromophores have been measured.
More thorough explanation:
The transition we are looking for is ψDoψA1→ψD1ψAo (where 0 refers to ground state and
1 to the excited state) and arises through a dipolar interaction between donor and
acceptor. The  probability of this transition is proportional to

      

Rate ∝ ΨD0
ΨA1

˜ µ D ⋅ ˜ µ A
R3 −

3 ˜ µ D ⋅ ˜ R ( ) ˜ R ⋅ ˜ µ A( )
R5 ΨD1

ΨA0

2

Assume that one can separate out the angular dependence of the dipolar term as below:

      

˜ µ D ⋅ ˜ µ A
R3 −

3 ˜ µ D ⋅ ˜ R ( ) ˜ R ⋅ ˜ µ A( )
R5 =

cos DA( )µ Dµ A

R3 −
3 cos D( ) µ DR( ) cos A( ) Rµ A( )

R5

= cos DA( ) µ Dµ A

R3 − 3 cos D( ) cos A( ) µ DR( ) RµA( )
R5

= cos DA − 3 cos D cos A[ ] µ Dµ A

R3 =
µDµ A

R3

    

Rate ∝ ΨD0
ΨA1

µDµ A

R3 ΨD1
ΨA 0

2

=
R6 ΨD0

ΨA1
µDµ A ΨD1

ΨA0

2

=
R6 ΨD0

µD ΨD1

2
ΨA1

µ A ΨA0

2

Caveats...   Note that in a complicated system such as biology often throws at us, there
may be multiple chromophores present.  If the absorption maximum of one is close to
the emission maximum of the other, the former can absorb the light emitted by the
latter.  This is normally a problem only when the absorber is present at high
concentrations and/or has a very large extinction coefficient.  This is a fundamentally
different process than that seen above, since it involves no direct interaction between
the two molecules.  In this case the fluorophore emits photons independent of the
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acceptor.  The absorbing molecule may, of course, not fluoresce.  This latter situation is
rare.
If we examine the experimental design for fluorescence spectroscopy presented above,
we can see that if the fluorescent molecule absorbs light VERY strongly, then a large
percentage of the excitation light may be absorbed in that part of the cuvette very near
the source.  If your fluorescence detection is focused towards the center of the cuvette,
you may be looking at molecules which are in the “shadow” of the molecules near the
source.  This is called the “inner filter effect.”  One should always check the absorption
spectrum of the sample to see that absorption is not too large.

Fluorescence and the Environment
Just as we saw in absorbance, the environment of a fluorophore can have dramatic
effects on the electronic states of the molecule, and hence on its fluorescence properties.
Stabilizing and destabilizing interactions with excited and ground state wavefunctions
can alter not only the energies of the transitions, but also the rates of each of the
radiative and non-radiative processes.  We have seen, for example, how neighboring
groups can quench or transfer fluorescence through a dipole-dipole mechanism.
Although the absorption process for any given moleculre is complete within 10-15 sec
(remember to distinguish this from the rate at which photons are absorbed in a bulk
solution, probability), there is often an appreciable delay between absorption and
fluorescence - generally 10-9 to 10-8 sec.  During this time, other process can occur:
collisional quenching as we’ve just seen, protonation/deprotonation, local conformational
changes, etc.
Many fluorescent molecules, such as ethidium bromide
(EtBr), undergo rapid solvent quenching of their excited
singlet states.  Consequently, EtBr in water does not have a
large quantum yield for fluorescence in solution.  However,
when it intercalates into DNA, it not only interacts with the
DNA base π systems, but also is relatively protected from
solvent.  The result is that the fluorescence quantum yield
goes up significantly.  This is the basis of EtBr staining of
duplex DNA in gels.
Fluorescent probes:  many of the common “Bio-Absorbers” are only weakly fluorescent if
at all (see p. 443 CS).  This can work to our advantage.  In many cases, one can
introduce a fluorescent probe into one’s system, for example bound near the active site
of an enzyme.

Time-dependent measurement of fluorescence.
For the processes discussed above, we can write:

τR = 
1
kF

 τF = 
1

kF + kic + kis + kq(Q) φF =  
τF

τR  

Where τR is termed the “radiative lifetime” and τF the “fluorescence lifetime.”  Note that
τF < τR. The radiative lifetime is related simply to the probability of a molecule in the
excited state emitting a photon.  The fluorescence lifetime represents the lifetime of the
excited state as a result of all de-excitation processes (radiative and nonradiative).
So far we have discussed only “steady-state” measurements of fluorescence.  Modern
spectroscopic techniques now allow us to look at fluorescence in real time.  We can, for
example, excite a chromophore with a very short (1 nsec), intense pulse of light and
then “watch” the fluorescence decay slowly away as the excited state becomes
depopulated.  If we call Sb(t) the concentration of excited state singlets, we can write:
-d(Sb)

dt   = [kF + kic + kis + kq(Q))] (Sb)  =   
1
τF (Sb)  (compare with V = k [C])

Sb(t)  =  Sb(0) e-t/τ
F (integrated as for 1st order kinetics)

N NH2

H2N

Br
-

+
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I(t)  ∝  kF Sb(t)  =  kF Sb(0) e-t/τ
F

So that, as expected, the decay follows a simple exponential.  One distinct advantage of
time-resolved fluorescence spectroscopy is that multiple chromophores can often be
distinguished.  Two fluorophores with different values of τF will produce a decay curve
consisting of two exponentials.  Curve fitting can resolve these components.  This would
not be possible in a steady-state measurement.

Fluorescence Anisotropy
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We saw before that molecules can have very different transition probabilities in
different directions.  The electric field component of the light must be able to induce
dipole changes in the electronic orbital being excited.
If we illuminate a molecule with light polarized along the z-axis (the E vector oscillating
along the z-axis), the probability of excitation is a function of  | µ • E |2  and so is
proportional to cos2θ, as shown above.  Consequently, only a fraction of the molecules in
a randomly oriented solution or powder will be excited - selective excitation.  If the
sample is rigid, then the emitted fluorescence will come from this sub-population and if
the fluorescence is associated with the same transition as the original excitation, then
the emitted light will retain this same polarization distribution.  Emitted light which
retains the original polarization is denoted by I|| (fluorescence intensity parallel to the
excitation polarization).  No fluorescence will be observed perpendicular, I , to the
excitation polarization.
If the lifetime of the excited state is long enough, the molecule will have randomly re-
oriented before subsequent fluorescence.  The emitted light will have all directions of
polarization.  The fluorescence intensity will be equal in the parallel (I||) and in the
perpendicular (I⊥) directions.
If re-orientation is comparable to the excited state lifetime, we can define the
fluorescence anisotropy as

A  =  
I ||- I ⊥
I ||+2I⊥

 

where again, I|| is the intensity of the emitted light observed parallel to the
polarization of the excitation light and I⊥ is the intensity observed perpendicular.
Examining our two extremes, if reorientation is complete before significant
fluorescence, then I|| = I⊥ and A = 0.  If reorientation of the molecule is infinitely slow,
then I⊥ = 0 and A = 1.
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Experimentally, we typically start
with non-polarized light and pass it
through a polarizing filter.  To detect
light with a particular polarization
component, we use a second filter in
front of the detector.  By rotating
these filters with respect to each
other, we can determine I|| and I⊥.
We have assumed that the
orientations of the transition moments in the ground and excited electronic states
coincide.  This is not necessarily the case, such that even in the complete absence of
reorientation, a component of the emitted light will be perpendicular to the excitation
polarization.  In this case, the anisotropy will have a maximum value (A) less than 1.
This depolarization is called the intrinsic polarization.
In proteins, there are two types of motions to consider.

For a fluorophore completely immobilized within a protein, the rotation measured will be the     overall
rotation of the protein      itself.

Rarely is a fluorophore completely immobilized within a protein.  A tryptophan residue near the
surface of the protein will be relatively free to rotate about its axis, even if the rotation of the
protein to which it is attached is quite slow.  Fluorescence will reflect this    local mobility    .

Phase Modulated Fluorescence - An alternative to time domain fluorescence
decay

The obvious way to measure fluorescence lifetimes is to excited with a brief flash and
then watch (in time) the decay of the fluorescence. An alternative, and very useful,
approach is a steady state approach which exploits the delay in fluorescence following
excitation. If the excitation light is modulated in a sinusoidal fashion, the fluorescence
response will reflect this modulation, but as a result of the delay, will be phase shifted
(φ) relative to the modulation of the excitation.

The plot below shows an overlay of the excitation and emission profiles:
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The phase lifetime is related simply to the phase shift by:      tan = p

where ω is the frequency of the modulation of the excitation.
Remembering that not all excited states deexcite via fluorescence (quantum yield < 1),
the intensity of the fluorescence emission will be less than the intensity of the light
absorbed. Noting that the modulation of the excitation is not complete, we can define

the demodulation factor:  
    

m = fractional modulation of emission
fractional modulation of excitation

=
B

A( )
b

a( ) = Ba
bA

with terms as described in the figure above.
The modulation lifetime is related to the demodulation factor by: 

    

m = 1

1 + 2
m
2( )1

2
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For a simple single exponential decay,   = p = m

As an aside, let’s derive the above relationships for a single exponential decay:
We can write the time dependent intensity of the excitation light as:     f (t ) = a + b sin t( )
And note that the fluorescence response will be similar:     N (t ) = A + B sin t −( )
The time derivative of the response is then:

    
N (t )

t
= B cos t −( )

We know that for an instantaneous excitation of a fluorophore, the rate of decay of the excited state
population (and therefore of the fluorescence) is a simple exponential with rate constant k = kf + kic.

    

N t( )
t

= −kN t( ) = − 1 N t( )
Adding continuous excitation, we add the intensity of the light

      

N t( )
t

= − 1 N t( ) + f t( ) = − 1 A + B sin t −( )[ ] + a + b sin t( )
Equating this to the expression earlier, we have:

      
B cos t −( ) = − 1 A + B sin t −( )[ ] + a + b sin t( )
Expanding:

      

B cos t( ) cos ( ) + sin t( ) sin ( )[ ] = − 1 A + B sin t( ) cos ( ) − cos t( ) sin ( )[ ][ ] + a + b sin t( )

B cos ( ) cos t( ) + B sin ( ) sin t( ) = − 1 A − 1 B cos ( ) sin t( ) + 1 B sin( ) cos t( ) + a + b sin t( )

B cos ( ) − 1 B sin ( )[ ] cos t( ) + B sin( ) + 1 B cos ( ) − b[ ]sin t( ) + 1 A − a[ ] = 0

For this to be true at all times t requires:

      
B cos( ) − 1 B sin ( ) = 0

      
B sin( ) + 1 B cos ( ) − b = 0

    
1 A − a = 0

From the first equation we have:

  

sin( )
cos ( ) = tan ( ) =

Squaring the first two equations and adding the resulting equations yields:

        

B2 2 cos2 ( ) + 1
2 B2 sin2 ( ) − 2 B2 sin ( ) cos ( ) = 0

B2 2 sin2 ( ) + 1
2

B2 cos 2 ( ) + 2 B2 cos ( ) sin ( ) = b2

add :  B2 2 cos2 ( ) − 1
2

B2 sin2 ( ) + B2 2 sin2 ( ) + 1
2

B2 cos 2 ( ) = b2

B2 2 + 1
2 B2 

 
 
 cos2 ( ) + B2 2 + 1

2 B2 
 

 
 sin2 ( ) = b2

2 + 1
2 = b

B( )2      but = A
a

m = Ba
bA

= 1 2 + 1
2

 
 

 
 

−1
2 = 2 2 + 1( )−1

2
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Circular Dichroism and Optical Rotation (CS 8.1, vH 10)
Return to a look at absorption processes.

Polarization of light

Z

X

Y

X

Y

E
B E

z-axis pointing
directly into paper

We saw previously that light can be represented as a sinusoidal wave representing its
electric field component.  In linearly polarized light, all of the electric field component is
oriented in a single direction (z above), with the electric field vector oriented uniquely in
one direction (x above).

Linear dichroism
We also saw that transitions can be “allowed” along one direction of the molecule and
“disallowed” (forbidden) along another.  For example, only one orientation of the electric
field can induce π→π* transitions in formaldehyde.
We also saw that for such a molecule in solution, excitation with polarized light will
selectively excite only those molecules oriented which are properly oriented.  If
fluorescence occurs before rotational reorientation, then the emitted light will also be
polarized.
More simply, if we look at absorption (not fluorescence) in an oriented sample, in
particular a sample oriented along one axis, but not along the other two, we can define
the dichroic ratio

d = 
A||-A⊥
A||+A⊥

 

Example:  In DNA, the bases are all oriented with their planes parallel to one another,
but rotated to varying degrees within the plane.  Since the transition dipole lies in the
plane of the bases, only light polarized with its electric field component in that plane
will result in an allowed transition, so that A|| = 0 and A⊥ > 0.  Therefore d < 0 and we
say that DNA has negative dichroism.

Circular Polarization of light
Circularly polarized light can be represented as the
sum of two linearly polarized light waves.

X

Y
X

Yθ

X

Y −θ
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Plane polarized light can be represented as the sum of two circularly polarized light
waves.

Absorption phenomenon
Circular Dichroism  ∆ε  = εL - εR

An optically active molecule can preferentially absorb left or right circularly polarized light.  For the
moment, accept the fact.  We define the circular dichroism of a molecule as the difference in the
extinction coefficients for left and right circularly polarized light.

For a given absorption band, this property can very across the band.  Such that we can define the
overall rotational strength      of the molecule as the integrated extinction coefficient difference across
the entire band.

R ∝ ∫ ∆ε
λ   dλ

Note that CD requires absorption of light.  But the CD can be positive or negative.

Readily measured.  Alternately measure absorption of pure left versus pure right circularly polarized
light.  Compare numerically.

Ellipticity:  θ = arctan 
minor axis
major axis 

Starting with linearly polarized lamp incident on a sample. Remembering that
linear light can be viewed as the sum of equal parts right and left circularly
polarized light, we can predict what will happen when the right circularly
polarized component is absorbed more than the left circularly polarized
light. The result is ellliptically polarized light. The degree of ellipticity can
be presented as the ration of the minor axis to the major axis (0, for no
difference in absorption for left and right circularly polarized; 1, for complete
absorption of one of the components).

Equivalent to circular dichroism:  θ = 2.303(AL - AR)
180
4π  

Refraction phenomenon

Refractive index:  
    
nr = c

v
=

speed of light in a vacuum
speed of light in a medium

This depends on the strength of the interaction between the electromagnetic field of light and the
molecules in the medium.

Such interactions depends on the polarizability of the molecule.
The refractive index varies strongly with frequency near the frequency of an absorption transition,

because the EM field and the light have similar energies.
Circular Birefringence   nL - nR

Due to symmetry (or lack thereof) in a molecule, the scattering interaction with it may be different for
light polarized circularly either right or left (see below for some insight as to why).  As we saw

Minor
axis

Major
axis
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before, one can measure this difference in scattering by separately measuring the light scattered for
either case or by measuring the effect of the sample on plane polarized light.

Circular birefringence is the difference in index of refraction for left and right circularly polarized
light.  The refractive index difference nL - nR results in a difference in phase between the left and
right circularly polarized light.

Optical Rotation: ø
Optical rotation is defined as the angle that the major axis makes with the

y-axis.  That is, it is a rotation of the plane of polarization.  Optical
rotation as a function of wavelength is called     optical rotatory dispersion     
(ORD).

Equivalent to circular birefringence.  ø = 
180 l

(nL - nR) λ 

Readily measured.  Proteins and DNA at ≈0.1 mM typically rotate the
plane of polarization by 0.01-0.1°    Current instruments can measure ∆ø
= 0.0001°

Summary
     Absorption          Refraction     

CD:   ∆ε  = εL - εR Circular birefringence:   nL - nR
Intensity (Eo) altered differentially Phase (β) altered differentially

Ellipticity:  θ = arctan
minor
major

 Optical Rotation:  ø

Molecular basis for optical activity
Introduction:

In absorption spectroscopy, the oscillating electric dipole component of light induced a dipole in the
absorbing molecule.  Moreover, we required that the electron involved be moved into a distribution
resembling the excited state.  This lead to the quantum mechanical result that the electron went
from one quantized state to another.  For light energies away from the exact required energy, the
electric dipole influenced the electron distribution, but not in the exact way to make the probability
of the transition very large.

Since the electric dipole of the light is oscillating, so then is this induced oscillating dipole in the
molecule.

Note that for an oscillating electric field propagating through space, there is a magnetic component
perpendicular to it.  We write these:

E = Eo cos 2πν (t-
x
c
 ) H = Ho cos 2πν (t-

x
c
 ) where x is the position of the molecule.

We saw before that the rotational strength in a CD transition is related to the
integrated area of the CD spectrum.  Quantum mechanically we can describe the
rotational strength in a manner similar to the way we described the absorption strength
(or probability) in the more simple absorption spectroscopy.
Roa ∝ <ψb|µ|ψa> • <ψa|m|ψb> (dipole strength ∝ <ψb|µ|ψa> • <ψa|µ|ψb>)
where µ = electric dipole operator (of the exciting light)

m = magnetic dipole operator (of the exciting light).  This is proportional to
the orbital angular momentum of the electron and corresponds to a
charge circulation, ie. a "light-induced current loop" analogous to the
light-induced electric dipole.

The result of the above dot product is that for a non-zero rotational strength, there must
be a light-induced dipole and light-induced charge circulation.  Moreover, the two
vectors must have a parallel component (that is, they must not be perpendicular).

ø

Incident Transmitted
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Charge Circulation
only

Magnetic Moment

Charge Circulation
plus

Charge Translocation

Magnetic Moment
plus

Electric Dipole

The combination of a light-induced dipole with a charge circulation about that dipole is
a helical movement of the charge about the common axis.  In order to get helical charge
movement in a net direction, the molecule must be appropriately asymmetric.
Note that the light-induced magnetic dipole is generally much smaller than the light-
induced electric dipole, therefore optical activity is typically a small effect.

Multi-chromophore interactions
As an example, look at dimer interaction.  We have seen this before in the exciton
effect in absorption spectroscopy.  Two induced dipoles in neighboring chromophores
can interact via a dipole-dipole interaction.
The rotation strength resulting from the dimer interaction can be expressed as
Roa ∝    0.5 imag[ <ψ1b|µ1|ψ1a> • <ψ1a|m1|ψ1b>  +  <ψ2b|µ2|ψ2a> • <ψ2a|m2|ψ2b>
]

± 0.5 imag[ <ψ1b|µ1|ψ1a> • <ψ2a|m2|ψ2b>  +  <ψ2b|µ2|ψ2a> • <ψ1a|m1|ψ1b>
]

± 
π
2λ  R12 • <ψ2b|µ2|ψ2a> x <ψ1b|µ1|ψ1a>

The important thing to note from the above is that there is a strong distance and
orientational dependence on the chromophore-chromophore interaction.  Hence CD is
very sensitive to the precise geometry of the interacting chromophores.
In fact, this is the basis for most applications of CD.  For example, we have seen that
the peptide bond is a π system with absorption bands at 220 and 190 nm.  For an
isolated peptide bond, the extinction coefficient (simple absorption) is very small at 220
nm, but larger at 190 nm.

Secondary structural information
In ordered protein structures such as an α-helix, we have a large number of interacting
peptide bonds at characteristic fixed distances and angles.  In a β-sheet, the angles and
distances are quite different, yet characteristic for that structure.  Consequently, the
CD spectrum can often be used to extract information regarding protein secondary
structure (percent α-helix, β-sheet, random coil, etc.)
For a protein which shows optical activity, the unique combination of circular dichroic
contributions is also characteristic of a particular structure for that protein (think of it
as a structural "fingerprint").  Even relatively small changes in structure (a
conformational change) can have large effects on the CD spectrum.  Consequently, CD
can be used as a probe of conformational change (in ideal cases, we can sometimes reach
conclusions about the disruption of α-helical structure, etc).
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Magnetic Resonance Spectroscopies  (CS 9; VH 12)

Introduction - Spin
The classical / quantum mechanical spinning top

We discussed previously how a circulating charge produces an electric
current.  This current in turn produces a magnetic moment µm with an
angular momentum, L.

This is how most introductory NMR courses introduce spin angular momentum.
Note, however, that this does not refer to an electron moving through space within
its orbital - that is called orbital angular momentum and will come up later. The
classical (not quite correct) explanation for spin angular momentum pictures the
electron or nuclear proton "spinning about its own axis).

Note that for an individual particle (electron or atomic nucleus) quantum mechanics
dictates that angular momentum is quantized.  For the electron, angular momentum
is quantized in units of the Bohr magneton βe.  Quantum mechanics further dictates
that the magnetic moment is related to the angular momentum by a factor ge.

For electrons: µm = - 
geβe

/h
  L = γe L

where the Bohr magneton βe = 9.27 x 10-21 erg gauss-1

Similarly, for nuclei: µm = - 
gnβn

/h
  L = γn L

where the nuclear magneton βn = 5.05 x 10-24 erg gauss-1

Now, the gyromagnetic ratio  γ= 
µm

L        =  - 
geβe

/h
  (for electrons)    or     - 

gnβn

/h
  (for nuclei) 

, and can also be expressed as 
ze
2m  (it is also called the magnetogyric ratio in C&S) .

Quantum mechanics further tells us that L is quantized, having allowed values of:
/ h[I(I+1)]1/2 (nuclei)
     or
/ h[S(S+1)]1/2 (electrons).

Therefore allowed values of µm are γ/ h[I(I+1)]1/2 (nuclei) or γ/ h[S(S+1)]1/2 (electrons).
Magnetic moments interact with magnetic fields

The magnetic moment can interact with a
magnetic field, H, to produce a torque
perpendicular to the plane defined by H and µm.
τ = µm x H
This torque then acts to produce a change (dL) in
the angular momentum according to

dL
dt    =  τ = µm x H = 

ze
2m  L x H = L x 

ze
2m  H = L x 

where  is termed the Larmour frequency.  We say that the magnetic moment
precesses about the applied magnetic field H with an angular velocity of precession of

.

µm

µm

H

Torque (out of plane)

precession
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Nuclear magnetic moments - allowed values and quantized energy levels
The energy associated with a magnetic moment in an applied field is
E = - µm • H
Note that the dot product really means “the component along...” as
shown in the diagram at right.
So that E = - µm  H  cos θ= - µmz  H
µmz is the component of  µm along  H.
But quantum mechanics dictates that µmz takes on discrete values
according to
µmz = mI γ / h where  mI = I, I-1, I-2, ..., I-2I

E = - mI γ / h H  =  -mI gNβN H
Note that the quantum mechanical restrictions on µmz require that µm is always slightly
off axis.  Therefore, µm always precesses about HZ, as we saw before.

Magnetic properties of selected nuclei

Nucleus I γ    (rad G     -1    s    -1 % Nat.
Abun

Rel. Sens.

1H 1/2 26753 99.98 1.000
2H 1 4107 0.016 0.0096
12C 0
13C 1/2 6728 1.11 0.016
14N 1 1934 99.64 0.0010
15N 1/2 -2711 0.37 0.0010
16O 0
17O 5/2 -3627 0.037 0.029
19F 1/2 25179 100 0.834
23Na 3/2 7076 100 0.093
31P 1/2 10840 100 0.066
35Cl 3/2 2621 75.53 0.0047
37Cl 3/2 2182 24.47 0.0027

Nuclei with no net spin (I=0) are useless to us in NMR for obvious reasons.  Nuclei with
I>1/2, have an additional interaction known as the the nuclear quadrupole interaction,
which greatly increases their relaxation rates, and therefore, as we will see later, their
NMR linewidths.  For this reason, NMR is most simple for nuclei with I=1/2.  From the
above, we see that the most useful biological nuclei are 1H, 13C, and 31P, with 15N being
significantly less sensitive.  Other nuclei have proven useful in special cases, notably
2H, 19F, 23Na, 35Cl, and 37Cl.
The relative sensitivity above refers to the expected signal strength for samples with
the same number of nuclei and is related to γ (see CS p. 489).

Spin-Spin Interactions - J Coupling
Remember the Nuclear Zeeman interaction:

    EZeeman = −m I hH = −m I gN NH

A spin with mI = +1/2 is said to be α, while a spin with mI = -1/2 is said to
be β.
mI = +1/2 (α) refers to a spin aligned with the field. This is a favorable
interaction. Energy is lowered by this favorable interaction. Conversely
for spin with mI = -1/2 (β).

µ m

H

µ mz

α

β
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For the interaction between two non-equivalent spins A and B

  
EAB = −m I A

m I B
J AB JAB = spin-spin coupling constant

If one nuclear spin is aligned with the field, then the total field that
the second nucleus feels is larger. If the second nuclear spin aligns
with this field, it is stabilized more than it when aligned with the
external field only. In other words, if the spins are both α (or both β),
then the energy of the system decreases. However, if the spins are
aligned opposite to each other, the energy of the system is increased
relative to the energy for no interaction.
This yields the following for the total energy of the system

  
EZeeman = −m I A

gN A N H − m I B
gN B N H − m I A

m I B
J AB

Magnetization
Many spins - bulk magnetization and the NMR experiment

N.B.  The following assumes a spin system with I (or S) = 1/2.  In this system, there are
only two quantum mechanically allowed states (or energies).  Analogous arguments
hold for systems with I > 1/2, but there will be more allowed states.
Consider a collection of nuclei, each with magnetic moment µm.  In the absence of a
magnetic field, the magnetic moments are randomly oriented.
Now apply a field along the (laboratory) z-axis.  The nuclei will tend to
align along the axis of the field and will precess about this axis at the
Larmour frequency, ωo.  They will eventually populate the allowed
quantized energy levels according to the Boltzmann distribution.  But
how do they get there?
As with absorption energy levels seen before, the spins interchange
between energy levels via thermal energy, that is, by interaction with
the environment.  As a consequence of these random interactions with
the environment, the total magnetization (bulk magnetization) will
increase with time according to

Mz = M
_

 z  ( 1 - e-t/T1  )  Mx = My =  0     (the field remains
randomly oriented in the xy directions)
where T1 is termed the “longitudinal relaxation time”  (longitudinal
refers to the direction of the field axis).  Again, as we saw in absorption spectroscopy,
the non-radiative mechanisms which couple the two states (and determine T1) can be
quite complicated and depend on exactly how the molecule interacts with its
environment.
Note that the nuclei are precessing about the field axis, but since they have no phase
relationship, the net magnetization in plane remains 0 (all contributions cancel each
other in a randomly precessing group of spins).
We can measure T1 by applying a magnetic field at a given instant in time and then
watching the growth of the magnetization along the axis of the field.  This is not,
however, how T1 is normally measured.
The picture so far presented forms the basis for simple “continuous wave” (CW) NMR
spectroscopy.  For a system with I (or S) = 1/2, we have a system of two different
quantized energy levels (spin up and spin down).
∆E =  γ/ h H  =  / h ωo  =  h νo for  I (or S) = 1/2
Application of electromagnetic radiation of the appropriate energy (now in the
radiofrequency region of the spectrum) can induce transitions between levels.  Since
there is a net population difference, we will have a net absorption of radiofrequency
energy, which is measured in a manner analogous to before (now a coiled wire, an
antenna, forms the basis for the generation and detection of the “light” (radiofrequency).

αa

βa αb
βb

βb
αb

N+δ

N-δ

Hz

Mz
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Also note that in the absence of an applied magnetic field, there is no difference in
energy between the two states (in fact, there is no direction about which to quantize the
states).  The energy gap between the two states is proportional to the applied magnetic
field.

Transverse Magnetization - towards Fourier Transform NMR
Hz

Mz

Hz

Hxy

Mz
Mxy

Mapply rotating
field Hxy

Hz

Hxy

torque

Mxy

M

Hz

Hxy

torque

Mz
xy

In the previous picture, a system of spins under the influence of an applied magnetic
field, Hz, gives rise to a bulk magnetization Mz aligned along the axis of the field  Hz.  If
we were now to apply a second field Hxy, perpendicular to the first and rotating at the
Larmour frequency, ωo, there will be a torque exerted on the bulk magnetization vector
according to
τ = Mz x Hxy
The direction of the torque will be perpendicular to the two vectors, and will tend to tip
the magnetization away from the z-axis.  This will, in turn, produce a net magnetization
perpendicular to the z-axis, Mxy.  Moreover, this magnetization will be perpendicular to
the field Hxy.  Since the in-plane field is rotating, we say that Mxy and Hxy are 90° out of
phase.
But now another torque comes into play.  Mxy and HXY interact to produce a torque
perpendicular to their plane (ie., along the negative z-axis).  This torque acts to drive M
along the negative z-axis.  You can see that this is the mechanism whereby an applied
RF field (with its oscillating magnetic field component) can induce transitions between
the two quantum mechanical states (aligned with and against the applied magnetic
field).
So we see that the application of a field Hxy perturbs the Boltzmann distribution of
states quantized along Hz.  If we now suddenly turn off the field Hxy, the system will
return to its equilibrium distribution and by monitoring the return of the bulk
magnetization, we can measure T1 as before (this is a more common approach).
Note also that after the application of the field Hxy, there remains a steady state
component of magnetization in the xy plane, Mxy.  After Hxy is turned off, this
magnetization component will also decay, but now with a different time course, T2.
With time

Mxy = (Mxy)0 e-t/T2  
The parameter T2 is called the transverse relaxation time.  The same interactions with
the environment which give rise to T1 relaxation contribute to T2, but additional
mechanisms exist for T2 relaxation.  Consequently, T2 < T1.
In order to maintain the 90° phase relationship between Hxy and Mxy, the field Hxy
must oscillate at the Larmour frequency ωo.  The energy of the radiofrequency radiation
producing Hxy must be

E = / h ωo which is the energy gap between the levels (see above).
Thus the “light” (RF) producing the transverse field Hxy must oscillate at the frequency
ωo which corresponds to the energy gap between the quantized states.
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Steady-state absorption at resonance
We have mentioned above that the application of a field Hxy rotating at the Larmour
frequency induces a component of the bulk magnetization in the xy plane.  We have also
discussed how this field can induce transitions among allowed Mz states, as for
absorption spectroscopy.  But as before, there are also thermal processes (non-radiative)
which tend to drive the population of states back to the equilibrium Boltzmann
distribution.  These are T1 processes.
Similarly, the equilibrium situation in the xy plane is Mxy = 0.  But the application of
Hxy rotating at ωo causes a net magnetization Mxy rotating 90° out of phase with Hxy.
Again, thermal processes (T2) tend to drive this back to the equilibrium value of Mxy =
0.
As for absorption processes in the optical regime, as long as thermal processes can
redistribute the system to near Boltzmann levels faster than you can excite them, you
will continue to have a net absorption of energy (the energy is eventually being
funnelled off into the thermal processes - heat).

Transverse phase
We instituted the requirement that Hxy be oscillating very near the Larmour frequency

ωo.  We see from above / hωo (hν) corresponds to the energy between states.  That makes
perfect sense from what we’ve seen before.
Another way to look at this requirement is to examine the phase relationship between
the involved vectors.  When Hxy is applied, it generates a torque on Mz to create Mxy in
plane and at 90° to Hxy.  Mxy will continue to precess at ωo.  As long as Hxy also rotates
at ωo, the two will remain at 90°.  If Hxy is rotating at ω≠ωo, then the angle between
them will slowly drift from 90°.  But Hxy will continue to exert a torque on Mz and so
will create a new Mxy at 90° to Hxy.  But this new Mxy will of course not align with the
previously produced Mxy (no longer at 90° to Hxy).  You can see that the magnetization
generated in the xy-plane will be random and will cancel itself out.  The net
magnetization Mxy will be 0.

The Bloch Equations Condensed
Cantor & Schimmel discuss an approach to understanding NMR first proposed by
Bloch.  We will skip over this formalism although students interested in seriously
applying NMR will do well to read this chapter carefully (p. 493-498).
From this approach we have a formula for NMR signal strength:

Signal   ∝   N   
µ

2
mz   H

2
z

kT     
γ2HxyT2

1 + T
2
2(ωo-ω)2 + γ2H

2
xyT1T2

 I=1/2  only

Note that, as expected, the signal strength is directly proportional to the number of
spins in the sample, i.e. to the sample concentration.  Also note that the signal increases

as H
2
z ,  such that a doubling of field strength quadruples the signal.

Brief aside: “rates” (k) vs. “lifetimes” or “half-lives” (T1 and T2)

It is important to note that lifetimes are inversely proportional to rate constants  k = 
1
T 

Thus,   faster (larger) relaxation rate  =  shorter (smaller) relaxation time      (and vice
versa).

T1 - Longitudinal Relaxation - a.k.a.  Spin-Lattice Relaxation Time
What happens when T1 is “Large” (“long”)? From the above equation:  signal ∝ 1/Τ1
When the longitudinal relaxation time is long, thermal processes do not reequilibrate
the levels efficiently so that application of Hxy causes the two levels to be more equally
populated and we have fewer net transitions in an absorption direction.  Signal
decreases.  This effect is called saturation and will prove very important in the future.
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What is the basis of T1 relaxation?
We know that non-radiative processes are due to interactions with the environment.  For optical

absorption, the mechanism of non-radiative mixing of the ground and excited states is often the
interaction of the molecule with fluctuating dipoles in the environment.  In the case of T1, the
mechanism of mixing is via i     nteraction with fluctuating (randomly oriented) magnetic fields     in the
medium.  To the extent that a neighboring field has a magnetic component along Mxy which is
oscillating at     the Larmour frequency      ω     o, it can act just like Hxy to induce a transition between the
quantized mz states.

We call the environment the “lattice” (hence “spin-lattice relaxation) and its nature
strongly effects T1.  In liquids or gases there is substantial molecular motion such that
the local magnetic fields produced by neighbor molecules have a wide frequency
distribution.  This means that there will be a number of oscillating fields at ωo and T1
can therefore be small (“fast”), typically <10 sec.  In a solid, those motions are severely
restricted so that the low frequency fluctuations can be << ωo.  In this case T1 can be
hours.
N.B. - the rotation of neighboring molecules giving rise to fluctuating magnetic fields is
relative, that is, it doesn’t matter which of the two molecules is doing the rotating.
Thus, if we are measuring T1 of methyl group protons, even though the environmental
magnetic fields may be rotating slowly with respect to the molecule (protein) to which
the methyl group is attached, the methyl group itself may be rotating quite readily.
Thus from its point of view, the environment is rotating rapidly - the magnetic fields
that it “sees” are fluctuating at a high rate.  Thus different atoms within the same
molecule may have very different relaxation rates.

T2 - Transverse Relaxation - a.k.a.  Spin-Spin Relaxation Time
The frequency ωo with which spins precess about the applied field is a function of that
field Hz.   But the effective field that an individual spin “sees” is influenced by the
environment, and so can be written Hz + ∆Hloc.  Just as the field will be heterogeneous
due to local environement, so too will be ωo.  This means that spins in the xy-plane will
precess at individual frequencies, ωo± loc.
In addition, this group of spins will not retain their phase relationship and Mxy will
decay once the tipping field is turned off.
This loss of phase occurs via two mechanisms:
1)  ∆Hloc due to small time-dependent fluctuating fields from the local environment.  In
other words, immediately after the spin “packet” is tipped into the xy plane, the spins
all have the same phase.  But with time, one spin may have its ∆Hloc altered, changing
at the same time, its phase.  Even if it returns to its original ∆Hloc, its phase “memory”
is lost.
2)  spin exchange with neighboring nuclei.  In this latter case, an two neighboring nuclei
of opposite spin can exchange the sign of their spins (analogous to energy transfer we’ve
seen before).  But in the process of this exchange, the phase relationship that each spin
had is lost.  Similarly T1 transitions between mz levels also cause a change in spin and
contribute to T2 dephasing - T2 will therefore always be at least as fast as T1.

NMR Linewidths
Returning to the equation for signal strength, we can simplify it somewhat to reveal the
effects of T1 and T2 on the NMR signal.

Signal ∝ 
T2

1 + T
2
2(ωo-ω)2 + γ2H

2
xyT1T2

 

Signalmax ∝ 
T2

1 +  γ2H
2
xyT1T2

 maximum signal at resonance,  ω = ωo    (the “peak” of the

signal)
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We can combine the two equations above to determine the linewidth ∆ω = ωo-ω at which
the signal is half of its maximum value.

∆ω1/2 = 
2
T2

 (1 + γ2H
2
xyT1T2) 1/2

From the above, we can see that:
For constant T1, the linewidth increases (signal broadens) for decreasing values of

T2.
For constant T2, the linewidth decreases (signal narrows) for decreasing values of T1.

Also note that the linewidth is independent of Hz.

Finally, note that when γ2H
2
xy T1T2 << 1,     ∆ω1/2 = 

2
T2

      and      Signalmax ∝  T2

Molecular Rotation
If a molecule (or a molecular substituent) is rotating quickly enough in space, then
during the timecourse of these measurements, a nuclear spin will only “see” an average
environment (just like the rotational averaging we saw for Förster energy transfer).  In
this case, ∆Hloc is the same for all nuclei of that type and T2 dephasing is much less.
Similarly neighboring nuclei spend too little time near each other to exchange spin.  In
this extreme narrowing limit
1/T2 ≈ 1/(2 T1)
A factor which often limits NMR of proteins is in fact the slow rate at which the
macromolecule (and therefore the fixed nuclei within it) tumble randomly in solution.
Again, note that even for a very slowly tumbling protein, protons on a surface methyl
group may rotate at a much higher rate (and show sharp resonances).  In solids we have
the extreme limit of limited rotation, and consequently we generally see very broad
spectra for solids.  However, it is now possible to mechanically spin the sample at a

frequency greater than T
-1
2  .

NMR - Properties of Molecules
Chemical Shift

So far, we have implicitely dealt with groups of identical nuclei.  They may have been
randomly in slightly different environments (thus giving rise to relaxational effects),
but on average they all felt the same field.  But in a real molecule with multiple nuclei,
we know that some nuclei are different environments than others in a well-defined way.
For example, methyl protons are in a different environment than are amide protons.
And in a given molecule or protein, certain amide protons will be in different
environments than are other amide protons (interacting with solvent in a random coil,
H-bonded to a amide carbonyl in an α-helix, etc.).
For this reason, not all protons feel the same net Hz.  We can write:

Hz
’ = Hz - Hzσ = Hz(1-σ) σ = 

Hz - Hz
’

Hz
 

σ describes how much the local environment adds to (or subtracts from) the applied field
Hz.
More generally, the additional field produced by the environment is compared to the
effective field in a reference standard sample.  In this case

δ = 
Href-Hsamp

Href
  x 106 =  

νref-νsamp
νref

  x 106 expressed in parts per million.

where Href is the effective field felt by the reference nucleus and Hsamp is that felt by the
sample nucleus.  Alternatively, one can speak about resonance frequencies, ν, at
constant field.
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Thus we have an NMR spectrum, most often plotted as a function of frequency or ppm.
Individual protons in a molecule will resonate at individual frequencies in the
spectrum.

010 9 8 7 6 5 4 3 2 1

Downfield, less shielding, Hz
eff>Hz

aromatics amide 1H's methyls
methylenes

peptide Cα's

At a field strength of ≈100,000 guass, most protons resonate over a range of ≈5,000 Hz,
centered around 500 MHz.  Values of δ range between 0 and 10 ppm (relative to the
protons of sodium 2,2-dimethyl-2-silapentane-5-sulfonate, DSS, or tetramethylsilane,
TMS).

Ring current shifts - aromatic amino acids
We will not go into a detailed analysis of which groups show what type of shifts, but one
effect can be very important in the study of proteins.  For an aromatic compound such
as benzene, we have seen that electrons reside in delocalized, circular π systems.  In the
presence of an applied magnetic field, these electrons are driven in a circular motion
within these orbitals.  This circulating charge produces an inductive magnetic moment.
The resulting field adds to the applied field outside of the aromatic ring, and opposes
the applied field within (above and below) the ring.  Thus ring protons, which protrude
on the outside edge of aromatic rings found in Phe, Tyr, etc, feel a field larger than
applied magnetic field.  This leads to a shift in δ of as much as 8-10 ppm.

Spin-spin interactions - splitting of resonance lines.
The environmental effects discussed above are due to interactions between nuclear
spins and other factors in the environment - the magnetic field produced by an
oscillating electric dipole or the magnetic moment produced by circulating electrons.
Another very important interaction is that between two nearby spins.  The magnetic
moment associated with one spin adds to the effect magnetic field felt by the other and
vice versa.  From the point of view of one nuclear spin, the neighbor spin can be either
aligned with or against the applied field (remember that it is quantized).  So the field
felt by the first spin is Hz±0.5J, where J is called the (spin-spin) coupling constant and
the neighbor spin has I=1/2.  In the spectrum, this results in two absorbance lines
centered at the original frequency and split by J.
You can readily see that for the interaction of one spin with two
identical neighboring spins (I=1/2), the single transition will be split
into two and each of those again split into two.  Since the splittings are
identical, we get the familiar 1:2:1 pattern.  If the two neighboring spins
are not identical, then the resulting pattern will be a doublet of
doublets.  Try this one for yourself.
Spin-spin splitting is very useful in NMR in that it tells us who is next
to whom in the molecule.  Such information is absolutely essential in
assigning protein spectra.  As you will see, the detailed mechanism of this interaction
can be either through-space or through-bond.
Spin-spin splitting can sometimes get in our way as well.  We have seen before that if a
particular contributor to a spin’s environment is fluctuating in its properties faster than
the time course of the measurement, then the spin “sees” only the average of that
fluctuation.  In the case of one spin splitting another (different) spin, if we were to apply
a second oscillating field at the resonance frequency of the second spin, then the first
spin will see only an average - in this case since the two choices are spin up and spin
down, the average will be zero.  In this way, then the first spin is no longer split by the
presence of the second spin.  This general phenomenon is called decoupling.
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Chemical Exchange
We have seen above that if a nucleus is flipping its spin very rapidly, then its neighbors
will see an average of the flipping states (no spin, in this case).  This averaging is a
general effect.  In fact, if a nucleus is jumping back and forth between two (or more)
environments, the NMR properties of that nucleus will be an average of the two states
(specifically, an average weighted by the proportion of time spent in each state).
Slow exchange

Consider a nucleus which can be in two chemical environments: A or B.  Designate the lifetime in
state A as τA and the lifetime in state B as τB.  Also let the resonant frequencies of the nucleus in
the two environments be ωA and ωB.

For conditions of “slow exchange,”      τA  >>  
1

ωA - ωB
 AND τB  >>  

1
ωA - ωB

 

two distinct lines are seen in the NMR.

Moreover, their T2 relaxation times are given by  
1

T  
2i

  = 
1

T
0
2i

   +  
1
τi

 

where 
1

T
0
2i

   is the relaxation time of the nucleus in site i in the absence of exchange.

Fast exchange
If however the lifetime of the nucleus in each state is shorter than the precession time, then the lines

will merge into a single line.  Under these conditions, the T2 relaxation time is
1

T2
  = χA 

1

T
0

2A

   +  χB 
1

T
0

2B

   +  χ2
A  χ2

B (ωA-ωB) 2 (τA+τB)

where χΑ and χΒ are the fractions of the nuclei in states A and B, respectively.  This effect is called

exchange broadening.
This phenomenon can often be used to measure dynamics in biological systems.

Fourier Transform NMR
The Rotating Frame

ωo ωo-ωaωo+ωb

0

−ωa

ωb

Laboratory Reference Frame Rotating Reference Frame

We have now seen that in a real NMR sample, there is a magnetization vector for each
nucleus in the sample and that each of these vectors precesses about the applied field at
a slightly different rate due to differences in environment.  The figure at left illustrates
several precessing spins in the xy-plane.  If we fix our reference system on the central
spin (i.e., rotate our coordinate system at a frequency ωo, then the rotating spins appear
as at right.  The spin that was precessing at exactly ωo is now stationary.  Spins
precessing more slowly, now precess in a negative direction and those precessing at a
higher frequency precesses in a positive direction.  Note immediately following the
initial 90° pulse which rotated the magnetization away from Hz, all spins are aligned.
With time those that precess faster get away from those that precess more slowly.  The
actual precession angle as a function of time is given by ωit.
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Free Induction Decay
We saw before that if we tip the magnetization into the xy-plane, a component of the
magnetization in the xy-plane precesses about the field.  If we place a radio receiver
antenna (“coil”) in the xy-plane, this precessing magnetization will induce a sinusoidal
current in the receiver, corresponding to its precession.  We also saw that the net
magnetization will slowy decay, as T2 processes lead to a gradual dephasing of the
spins.  The resulting free induction decay, or FID, may look something like the figure
below.
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S1=e-t/200

S2=e-t/200sin(at)

Time (msec)
If there is more than one spin, then the signal will be a combination of more than one
sine wave.  Each with its own characteristic frequency and relaxational properties.  The
FID for two spins might look something like the one below.

-1
0 225 450 675 900

Time (msec)

Frequency (MHz)

S1=e-t/200sin(10.0t)
S2=e-t/500sin(9.0t)

S1 + S2

Via a mathematical transformation of the data known as a Fourier transform, one can
decompose the above FID into a frequency domain spectrum in which each peak in the
NMR spectrum corresponds to a spin-generated sine wave above, and the linewidth of
the signal reflects the relaxational properties we examined earlier (from the Bloch
equation result above).
This is the simplest basis for an NMR experiment.  But it gets more complicated...  And
the information gets richer...
First, let’s look more at the Fourier transform.  Note in the above figure that the sine
wave which decays more rapidly (ie. the one with the shorter T2), gives rise to a more
broad signal in the resulting Fourier transform frequency domain spectrum.  This is
what the Bloch equations told us should happen.
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We can manipulate FID’s (and often do) in the computer to artificially alter the
apparent linewidths of the NMR resonances.  We saw before that it is an inherent
property of the Fourier transform that fast decay in the time domain gives rise to broad
resonances in the frequency domain, and of course the opposite is true.  Indeed, if our
spectrum is characterized by broad lines and we want to be able to distinguish peaks
better, we can artifically multiply our expermental FID to decrease the early time
signals and increase the later ones.  This is typically done by applying a Gaussian
muliplication to the FID.  The result is an FID which decays more slowly.  When we
Fourier transform this, we get a spectrum with sharper peaks!
Why don’t we just keep doing this more and more to get infinitely resolved peaks?!
Notice that the beginning of the FID has more “information” in terms of the sine wave.
The end of the FID has much less (typically we collect an FID until the signal has
decayed completely).  In the manipulation we did above, we decreased the early (signal-
rich) part of the FID and increased the late (noise rich) part of the FID.  Consequently,
as we do this, we decrease the signal-to-noise ratio of our final spectrum.  This limits
how much we can artificially increase the resolution.  There is no free lunch.
In fact, if we have a spectrum with good resolution but poor signal to noise, we can do
the opposite.  We can apply a exponential decay weighting function to our FID.  This
increases the signal-rich part of our FID and decreases the noise-rich part.  The signal-
to-noise ratio of the final spectrum increases (but our peaks broaden somewhat).

90° / 180° Pulses
90° PULSE - If we apply a very intense field Hxy for a very short (but specific) period of
time, we can tip essentially all of the magnetization away from Mz.  The angle by which
the magnetization is tipped is given by θ =  γHxy ∆t (this can be readily derived from
what we learned about torque on magnetic moments above).  So we see that the angle is
a function of both the intensity of the field and the time for which it is applied.  If we tip
the magnetization 90° (a 1-200 µsec pulse under typical conditions), after the transverse
field is gone, there will be magnetization in the xy-plane rotating at ωo.  As the T2 phase
decays, so too will the net magnetization in the plane (and so then will our signal).  This
signal is known as the free induction decay.
180° PULSE - In a similar fashion, we can apply twice the field strength (or the same
field for twice the time) and tip the magnetization all the way around 180°.  Note that in
this experiment, we have taken the whole system from its Boltzmann distribution
producing the original Mz to one with a net -Mz.  At the end of the pulse, the system will
slowly decay back to its Boltzmann value of +Mz according to T1.

Pulse Sequences: 180° -  - 90° measures T1
We can exploit a combination of pulses above, to measure T1 and T2.  We just say that
following the application of a 180° pulse, the net magnetization is changed from +Mz to
-Mz and that with time this decays back to +Mz according to T1.  But our detection
scheme has relied on detecting a rotating magnetization in the xy-plane.  At no time in
this sequence, is there net magnetization in the xy-plane.
Now look at what happens if we apply a 180° pulse, followed immediately by a 90°
pulse.  This is essentially the same as a 270° pulse.  All of the magnetization will be
sent to the xy-plane and we will see a large signal in our detector.  If however, we apply
a 180° pulse and wait a short period of time (τ), the magnetization -Mz will decrease

according to e-t/T1  .  If we then apply a 90° pulse, we will tip the remaining
magnetization into the xy-plane and see a signal (now smaller, reflecting the fact that
the tipped Mz was smaller).  This is called a 180-τ-90 pulse sequence.
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Pulse Sequences: 90° -  - 180°  -  The “Spin Echo”

90° 180°τ τ

Tip the
magnetization into

the xy-plane

Spins with
different ω,

precess differently

2nd pulse
rotates all
spins 180°

Spins now
precessing  in

opposite direction

Spins with original
phase re-focus,

producing an “echo”

SIGNAL
The above “pulse sequence” is the basis for much of modern FT NMR.  It is very
important to examine what is happening during the time course of this pulse sequence.
We first apply a 90° pulse to tip the bulk magnetization into the xy-plane.   As we have
seen, the spins will precess about the field, but each at a slightly different ω due to
slight differences in the chemical shift of each spin.  If we wait a period of time τ the
bulk magnetization will have spread out in the plane, reducing the overall signal, but in
the absence of dephasing, each spin is precessing at a different, but well-defined
frequency ω.  If we then apply a 180° pulse, each spin will be rotated about y as shown
above.  Each spin is still precessing about the applied field at its own frequency, but
now in the opposite direction that it had been.  These means that each spin will retrace
its steps and after a time (exactly) τ, they will all end up together (rotated 180° from
where they were placed by the initial 90° pulse).  Thus the spins will coalesce, returning
the signal to its maximum value and producing an echo.
But we know that in a real system, T2 processes will occur,
leading some spins to lose their original phasing.  Such
spins will not coalesce with the rest to produce the echo at
time 2τ.  Thus, if we plot the echo intensity as a function of

τ, the resultant trace will decay as e-t/2τ as shown at right.
Field Inhomogeneity

This pulse sequence is useful for another reason.  NMR
magnets are not perfect and it is impossible to design one
such that every spin in the sample sees exactly the same Hz.
One part of the tube will have a slightly different Hz
(remember it only takes one part in a million to mess things up...).  This means that
protons which are chemically the same (eg. methyl group protons at the “3” position of
our molecule) should precess at the same ωo in fact will have different precession
frequencies.  This means that they no longer precess together and their bulk
magnetization in the xy plane decays more rapidly than it intrinsically should - the
signal for that proton is broadened and if we were to measure the simple decay to get T2
we would get the wrong value.
In the pulse sequence above, after the first 90° pulse, these spins separate from each
other in the plane.  However, after the 180° pulse, they refocus exactly!  Only true
dephasing will keep them from refocusing and producing our spin echo.  Thus
measuring T2 by the spin echo method gives us the true T2.

Tau
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J-Modulated Spin Echo  (Heteronuclear)
We have discussed how spin-spin interactions occur because one nucleus
“feels” the magnetic field produced by a neighboring nucleus.  Let’s consider
not just two different kinds (chemical shifts) of spins, but two different kinds
of nucleus (eg. 1H and 13C) - heteronuclear coupling.  As an example, let’s
look at the 13C NMR spectrum of chloroform: CHCl3.  We know that the 13C
resonance will be split into two by interaction with the 1H nucleus (which is
either spin up or down).  The 13C resonances precess at ωo ± JCH/2, or in the
rotation frame, they precess at +JCH/2 and -JCH/2.

-1/2 JCH

tD 180° tD

α

β

1/2 JCH

-1/2 JCH

1/2 JCH

α

β

aquire (13C NMR)

1/2 JCH

-1/2 JCH

β

α

But now, let’s repeat the experiment but applying 1H decoupling throught the second
delay (tD) and the aquisition (but not during the initial delay.  When decoupling is on,
the two 13C spins now precess at the original (chemical shift) ωo (in other words they do
not precess in our rotating frame).  We get an FID from them, corresponding to a single
peak centered at the chemical shift.  But notice that the intensity of this peak is less
than what it would have been had there been decoupling throughout the entire process.

0

0

tD 180° tD

1H Decoupled

-1/2 JCH

α

β

1/2 JCH

aquire (13C NMR)

Now let’s lenghten the delay time tD:

0

0

tD' 180° tD
'

1H Decoupled

aquire (13C NMR)

-1/2 JCH

α

β

1/2 JCH

In fact, the extent to which this signal is decreased is a function of the delay time tD and
the J-coupling precession frequency (JCH/2).  Depending on their relationship, the
resulting “static” vector can be large (1/2 J tD = 0,2π), zero (1/2 J tD = π/2,3π/2), or
negative (1/2 J tD = π).
We have talked before how the FID is simply a collection of sine waves and that when
we Fourier transform this “time domain” we get a “frequency domain” spectrum.  We
can think of tD as a new time variable.  By convention, since tD comes first it is often

Chemical
shift (ωo)

β α

JCH
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called t1 (not to be confused with T1 and the FID time domain is called t2.  When we FT
time domain t2 in this case each resonance will vary sinusoidally with t1, with the
frequency of that oscillation determined by the J/2 coupling (modulated by J coupling).
So if we FT the entire set of spectra obtained obtained in the aquistion, we will get a
frequency domain in this second dimension.  2 dimensional NMR!
Note that the extent to which the spins have precessed during the delay is a function of
their spin-spin (in this case) coupling strength and the delay time.  This coupling will be
different for different spins with different couplings.

Homonuclear J-Modulated Spin Echo
Now let’s look at the same situation, but one in which
protons split protons (homonuclear).  Consider two spins
A and X.
Let’s look at our spin echo pulse sequence for the spin HA.
Use the rotating frame ωa.

tD 180° tD

α

β

β

α

look at echo (1H NMR)

β

α

or aquire (1H NMR)

As before, we do a 90° pulse, followed by a delay tD. During this time, the spins precess
in opposite directions as before.
Now apply the 180° pulse.  As before, the spins are flipped, but note that the spins that
these spins are coupled to are also flipped (in other words the the HA spin above labeled
α originally saw the neighboring X spin as “up” - hence the term α).  Now that same
spins sees its neighbor “down” and so we now call that HA spin β.  The direction of the
subsequent precession depends on this and do the spins precess in the direction opposite
to what we saw before.  They will in general not  produce an intense echo after a delay
tD.  You can also view this by noting that the spins are now out of phase with respect
to before (by exactly 4π tD Jax radians).
Look at specific delay times:

tD 180° tD

α

β

β

α

no echo
β

α

45°

45°

tD 180° tD

α

β

β

α

positive echo

β
α

90°

90°

R
C

C
HXR

HA

R
R

ωa ωx
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tD 180° tD

α
β

β

α

positive echo

β

α180°

180°

Concept: Population transfer

Measuring Through-Bond Couplings - COSY
We saw before that spin-spin couplings (J-couplings) measure the interaction between
two nuclei.  In particular, these interactions occur through-bond - they require that the
nuclei be connected by a small number of covalent bonds.  Therefore, J-coupling
information is valuable in assigning the covalent structure of a molecule.
A two-dimensional NMR technique called COrrelated SpectroscopY (COSY) measures
J-couplings in a single set of pulse experiments.  We do not have time to go into the
mechanics of how this is done, but the end result is a two-dimensional spectrum in
which chemical shift appears on both in-plane axes.  The vertical axis contains a
“spectrum” in which peaks occur only in the two one-dimensional spectra at at the
intersections of two J-coupled transitions.

Measuring Through-Space Couplings - NOESY
We have seen before that two dipoles can interact in a purely through-space manner (for
example, in Förster energy transfer).  A similar interaction occurs in NMR to produce
(mainly) relaxational effects.  Another two-dimensional approach exploits this effect,
such that cross-peaks in the two-dimensional spectrum reflect nuclei coupled via a
dipole-dipole mechanism.  This effect is called the Nuclear Overhauser effect, the
spectrum is called NOESY.

ESR
Electronic Zeeman Interaction

    EZeeman = +ms hH = +msg H
A spin with ms = +1/2 is said to be α, while a spin with ms = -1/2 is said to be β.
ms = +1/2 (α) refers to a spin aligned with the field (as in NMR). Since the charge of an electron is

negative, all interactions are opposite that which we described previously for interaction with an
applied magnetic field. Energy is increased by this unfavorable interaction. Conversely for spin
with ms = -1/2 (β).

Spin-Spin Interactions - Hyperfine
For the interaction between an electron and a nucleus

  
Ehyperfine = +msm I A A = hyperfine coupling constant (compare with NMR’s J)

If  the nuclear spin is aligned with the field, then the total field that the electron feels is larger. This
results in a relative destabilization of an electron which is also aligned with the field. In other
words, if the electron and nuclear spins are both α (or both β), then the energy of the system
increases (opposite to NMR). However, if the spins are aligned opposite to each other, the energy of
the system is decreased  relative to the energy for no interaction.

This yields the following for the total energy of the system

  
EZeeman = −m I A

gN A N H − m I B
gN B N H − m I A

m I B
J AB

Environmental Differences - g value
When we talk about local fields effecting the total field that a local electron feels, we refer to

variations in g value. This is effectively like chemical shift in NMR. The difference is that variations
in g value usually arise from orbital effects, rather than environment. Organic radicals are simple
systems and the g value is very near that of the free electron (ge). For metals, however, interactions
between the magnetic moment of the electron and the orbital angular momentum of the electron
can lead to large variations in g value.

g-anisotropy
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Since g values in metals arises from interactions with the orbital angular momentum, it is not
surprising that this interaction varies with the angle between the applied field and the electronic
orbital of interest (for electronic orbitals above the fully symmetric s orbital). This is refered to
g-anisotropy.

applications
radicals and metal centers in proteins
nitroxide radicals monitor motion


