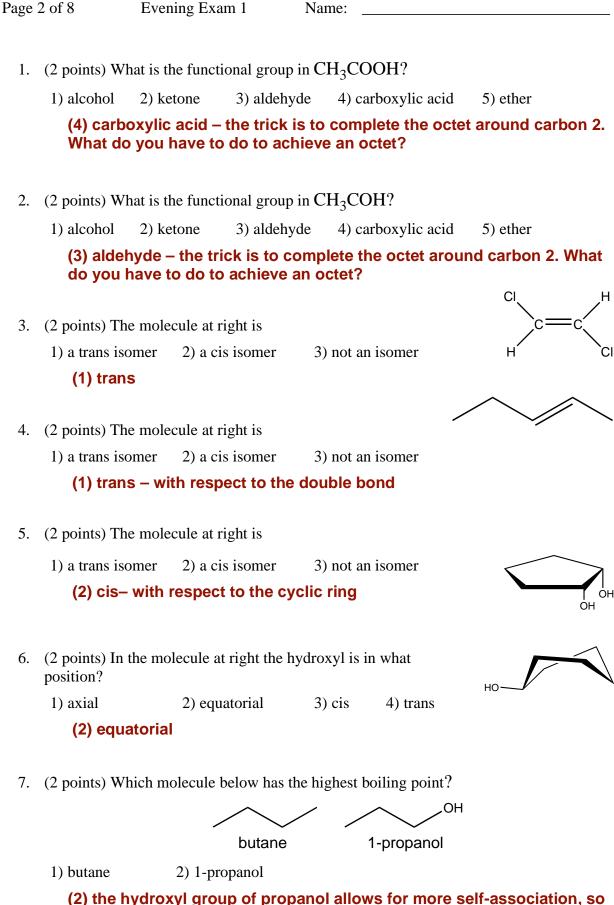
Name:

Chem 250

Answer Key Evening Exam 1v2


This exam is composed of **46** questions.

As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

I hereby state that all answers on this exam are my own and that I have neither gained unfairly from others nor have I assisted others in obtaining an unfair advantage on this exam.

Signature

PERIODIC TABLE OF THE ELEMENTS																	
1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4 A	5A	6A	7A	8A
1																	2
Н																	He
1.008		1										r	1	1	r		4.003
3	4											5	6	7	8	9	10
Li	Be											В	С	Ν	0	F	Ne
6.939	9.012	-										10.81	12.01	14.01	16.00	19.00	20.18
11 N	12											13	14	15 D	16	17	18
Na	Mg											Al	Si	Р	S	Cl	Ar
22.99	24.31								1	1		26.98	28.09	30.97	32.07	35.45	39.95
19 TZ	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35 D	36 17
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37 Dh	38 Sm	39 Y	40 7 m	41 Nih	42 M o	43 To	44 D	45 Dh	46 D-1	47	48 Cd	49 Tm	50 Sm	51 Sh	52 To	53 I	54 X o
Rb	Sr		Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Ca	56 D o	57 I o	72 Hf	73 To	74 W	75 Do	76 Og	77 Ir	78 Pt	79	80 Ца	81 Tl	82 Pb	83 Bi	84 Po	85 A t	86 Dn
Cs	Ba	La		Та		Re	Os			Au	Hg				-	At	Rn
132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87 Em	88 Do	89	104 Um a	105 Umm	106 Umb	107 Ling	108 Umo	109 Umo									
Fr	Ra	Ac	Unq	Unp	Unh	Uns	Uno	Une									••
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)]								

harder to put into gas phase

For questions 7 through 10, please refer to the molecule at right

- 8. (2 points) In the molecule above, the ideal bond angle around the 7-carbon is:
 - 1) 120° 2) 109° 3) 90° 4) 180° (2) 109° lt's sp³ - OWL 12.1a
- 9. (2 points) In molecule above, carefully circle all chiral centers. If there are none, write "no chiral centers" next to the drawing.

5

sp³

(Only) carbon 4 is a chiral center

10. (2 points) Can the molecule above, as a pure species, participate in intermolecular hydrogen bonding?

1) yes 2) no

(1) yes, the OH with itself or with the ketone

11. (2 points) Which atoms lie in the same plane? Think carefully.

1) carbons 1, 2, 3, 4, 7, and the O of the carbonyl only

- 2) carbons 1, 2, 3, 4, 7 only
- 3) carbons 1, 2, 3 only
- 4) carbons 1, 2, 3, 4 only
- 5) all atoms except F and those in OH
- 12. (2 points) In the molecule at right, the amine is classified as:

 primary
 secondary
 tertiary

 13. (2 points) In the molecule at right, the alcohol is classified as:

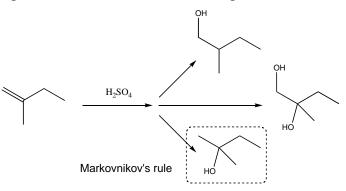
 primary
 secondary
 tertiary

 13. (2 points) In the molecule at right, the alcohol is classified as:

 primary
 secondary
 tertiary

 14. (2 points) Which is the weaker acid?

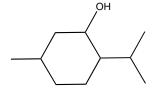
 classified as:
 primary
 phenol
 tertiary


 14. (2 points) Which is the weaker acid?

 classified as:
 phenol
 tertiary

(1) alcohols are terrible acids, except for phenol. Because of resonance, phenol can delocalize the charge on the deprotonated species. Cyclohexanol cannot.

Page 4 of 8		Evening Exam 1	Name:						
15. (2 points) Ketones are readily oxidized (by oxygen in air) to									
	1) aldehydes	2) alcohols	3) carboxylic acids	4) the parent alkanes					
	5) ketones ar	e not readily oxidized							
(5) not readily oxidized – see Chapter 17.4.a. OH does not readily replace an alkane off of the ketone.									
16. (2 points) Aldehydes are readily oxidized (by oxygen in air) to									
	1) ketones	2) alcohols	3) carboxylic acids	4) the parent alkanes					
5) aldehydes are not readily oxidized									
(3) carboxylic acids – see Chapter 17.4.a. Note that the C adopts a higher oxidation number in the carboxylic acid. H is replaced by OH									
17.	(2 points) Ket	ones are reduced by H	I2 and an appropriate catalys	st to					
	1) ketones	2) alcohols	3) carboxylic acids	4) the parent alkanes					
	5) ketones ar	e not readily reduced							
	(2) alcoh	ols – see Chapter '	17.4.b. Note that the C a	dopts a lower					
oxidation number in the alcohol. You can see that H ₂ is "added" across the C=O bond									
18. (2 points) Aldehydes are reduced by H_2 and an appropriate catalyst to									
	1) ketones	2) alcohols	3) carboxylic acids	4) the parent alkanes					
	5) aldehydes	are not readily reduce	d						
(2) alcohols – see Chapter 17.4.b. Note that the C adopts a lower oxidation number in the alcohol. You can see that H ₂ is "added" across the C=O bond									


19. (2 points) Circle the correct reaction product:

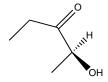
- 20. (2 points) A racemic mixture
 - 1) rotates polarized light to the right 2) rotates polarized light to the left
 - 3) does not rotate polarized light

(3) half the molecules rotate light to the right, while the other half rotates it to the left, so the mixture has no net rotation.

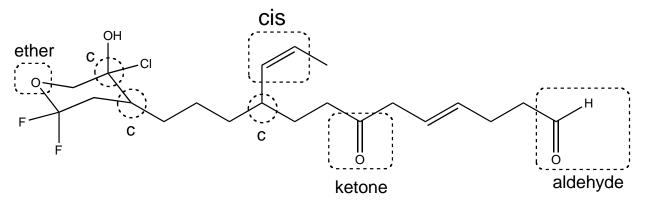
- 21. (2 points) The molecule at right is which enantiomer?
 - 1) R
 - 2) S
 - (1) R
- 22. (2 points) The molecule at right is which enantiomer?
 - 1) R
 - 2) S
 - (2) S
- 23. How many stereoisomers are possible for the molecule at right?
 - Answer: ____8____

4) CH₃CH₂CHOHCH₂CH₂CH₃

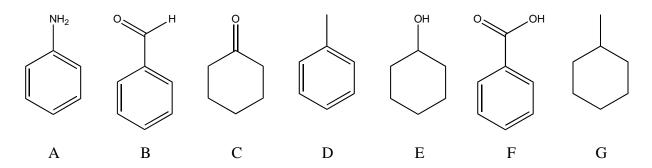
5) CH₂CH₂OCH₂CH₂CH₂CH₃


There are 3 stereocenters, so there are $2^3 = 8$ stereoisomers

Use the choices below for each of the questions xx through yy

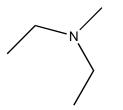

- 1) CH₃CH₂CH(CH₂CH₃)CH₂CH₂CH₃
- 2) CH₃CH₂COOCH₂CH₂CH₃
- 3) CH₃CH₂COCH₂CH₂CH₃
- 24. (2 points) Which of the above has a ketone functional group? (3)
- 25. (2 points) Which of the above has an ester functional group? ____ (2)
- 26. (2 points) Which of the above has an ether functional group? ____ (5)
- 27. (2 points) In which of the above pure compounds would intermolecular H-bonding interactions be expected to have an effect on boiling point?

```
(4) the hydroxyl group has the largest potential of H-bonding and, in particular, has both donor and acceptor capability – OWL 14.6
```

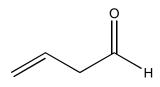


For questions 28 to 32, refer to the molecule below. Please mark your answers neatly.

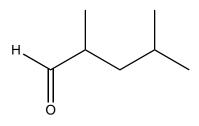
- 28. (2 points) Circle an aldehyde functional group and clearly write "A" next to it.
- 29. (2 points) Circle a ketone functional group and clearly write "K" next to it.
- 30. (2 points) Circle an ether functional group and clearly write "E" next to it.
- 31. (2 points) Circle each **chiral center** and clearly write "**C**" next to each.
- 32. (2 points) Circle a cis bond and clearly write "cis" next to it.

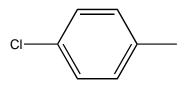

33-39. (2 points each) Place the letter for each molecule above next to its correct name below.

D_	toluene	F _	benzoic acid	G_	methylcyclohexane
	phenol	B_	benzaldehyde	E _	cyclohexanol
A_	aniline		cyclohexanoic acid		cyclohexylamine
			cyclohexanal	C _	cyclohexanone


For the following, refer to the structures above and reply with the corresponding letter (A-G).

- 40. (2 points) Which molecule above in a reaction with $K_2Cr_2O_7$ and H_2SO_4 yields benzoic acid? **__B**_
- 41. (2 points) Which molecule above in a reaction with H_2 and a transition metal catalyst yields cyclohexanol? __ C _
- 42. (2 points) Which molecule above in a reaction with $K_2Cr_2O_7$ and H_2SO_4 yields cyclohexanone? **E**


43. (4 points) Draw the structure for diethylmethylamine:


44. (4 points) Draw the structure for 3-butenal:

45. (4 points) Draw the structure for 2,4-dimethylpentanal

46. (4 points) Draw the structure for para-chlorotoluene

Chem 250 Bonus Question

Evening Exam 1

Elena loves her horse (she likes everything with four legs and a tail). One day her horse becomes terribly ill. The vet diagnoses a bacterial infection and prescribes a course of antibiotics. Unfortunately, the antibiotics cost \$1,000 per week and Elena doesn't have that kind of money. The vet gives her a free sample he obtained from a salesman, but that's only good for 3 days. She gives that to her horse and he starts to improve, but it will take 3 weeks of treatment.

Her friend Bob says he can get the same antibiotic for \$20/week via the internet (www.crackpotdrugs.com), so they order some. In the mean time, Elena worries "how do we know this is the real thing?" So when the internet antibiotic arrives she takes some of it and some of the free sample and gives them to her friend Sharon, who works in a chemistry lab. Sharon runs elemental analysis and mass spec and tells Elena that both samples show the same composition and bond connectivity – and they both match up with what is expected for the structure of the antibiotic.

Elena gives the new drug to her horse, who immediately takes a turn for the worse.

(2 points) What's happening? Why do you think the horse took a turn for the worse?

Most likely, the antibiotic is active as one stereoisomer (eg, R or S), but toxic as the other isomer (this does happen). Synthesizing or purifying just the one active isomer is often a very expensive part of drug manufacturing (after all, the compounds have the exact same chemical properties and so are difficult to isolate), so it would make sense that "crackpotdrugs" could sell a racemic mixture for much less money than the drug company can sell the active isomer. The horse, of course, can tell the difference between R and S since he is chiral.

(2 points) Had Elena taken Chem 250, she might have asked for one more test that could have warned her about a potential problem. Describe that test.

She could have asked the chemist to use a polarimeter to measure the extent to which the compounds rotate plane polarized light. The racemic mixture would not rotate light, while the correct isomer will rotate light in a specific direction.

Most of you figured that the internet site sold her the *wrong* isomer. This is possible, and I gave full credit for that answer, but it's much more likely that they could purchase the racemic mixture and sell that for cheap.