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The “Two-Fer” Principle

For hydrogen-bonding in biology, whenever possible,
try to get “two for the price of one”

This is more than twice as good as this

: ﬂ

Bringing the two side chains together requires an entropic price

Forming the second H-bond in an already restricted pair does not
require paying the entropy price a second time



The “Two-Fer” Principle

For hydrogen-bonding in biology, whenever possible,
try to get “two for the price of one”

This is more than twice as good as this
: |
_A._Mz H
o
(0] H
b
. : [
There is also an electronic argument PN
N
Think about alternate resonance |
forms for the amido group /@z\\/\f



Resonance Forms



Hydrogen Bonding in Nucleic Acid Bases
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Hydrogen Bonding in Nucleic Acid Bases
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Hydrogen Bonding in Nucleic Acid Bases
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What forces are important?
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Base Pairing
(Donors matched to Acceptors)

Good base pairing
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Watson-Crick facing



Base Pairing
(Donors matched to Acceptors)

Good base pairing
Watson-Crick facing
but Anti-Watson-Crick orientation
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Bad Base Pairing

(Donors not matched to Acceptors)
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Bad Base Pairing

(Donors to Acceptors with terrible angles)
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Wild (but good) Base Pairing
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Burial of hydrophobic surface drives helix formation
(hydrophobic core / stacking interactions)
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Burial of hydrophobic surface drives helix formation
(hydrophobic core / stacking interactions)
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Flat faces are nonpolar



Burial of hydrophobic surface drives helix formation
(hydrophobic core / stacking interactions)
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Other chemical constraints
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Furanose Sugar Ring
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Furanose Sugar Ring
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TABLE 6-2 A Comparison of the Structural Properties of A, B, and Z DNAs as Derived from Single-Crystal X-Ray Analysis

Helix Type
A B Z
Overall proportions Short and broad Longer and thinner Elongated and slim
Rise per base pair 23A 3.32A 38A
Helix-packing diameter 255A 237A 184 A
Helix rotation sense Right-handed Right-handed Left-handed
Base pairs per helix repeat 1 1 2
Base pairs per turn of helix ~11 ~10 12
Rotation per base pair 33.6° 35.9° -60° per 2 bp
Pitch per turn of helix 246 A 332A 456 A
Tilt of base normails to helix axis +19° -1.2° -g°
Base-pair mean propeller twist +18° +16° ~0°
Helix axis location Major groove Through base pairs Minor groove
Major-groove proportions Extremely narrow but Wide and of intermediate Flattened out on helix
very deep depth surface
Minor-groove proportions Very broad but shallow Narrow and of intermediate Extremely narrow but
depth very deep
Glycosyl-bond conformation anti anti antiatC, synat G

Source: Adapted from Dickerson R. E. et al. 1982. CSHSQB 47: 14, Copyright © 1982 Cold Spring Harbor Laboratory Press. Used with permission.
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Letters to Nature Hoogsteen vindicated

Nature 430, 377-380 (15 July 2004) | col: 10.1038/nature02692

Replication by human DNA polymerase-. occurs by
Hoogsteen base-pairing

Deepak T. Nairl, Robert E. Johnson?, Satya Prakash?, Louise Prakash?
and Aneel K. Aggarwalt m./m_aoa
: ' v 4

A crystal structure from from July 2004
shows that an error correcting (and
error-prone) DNA polymerase uses
Hoogsteen-WC base pairing to
recognize the incoming substrate dNTP.

This supports biochemical studies that
had been suggesting such a pairing.

This polymerase is good at bypassing
lesions in the DNA.




Letters to Nature Hoogsteen vindicated

Nature 430, 377-380 (15 July 2004) | col: 10.1038/nature02692

Replication by human DNA polymerase-. occurs by But... perhaps not...
Hoogsteen base-pairing

Deepak T. Nairl, Robert E. Johnson?, Satya Prakash?, Louise Prakash?
and Aneel K. Aggarwalt m./m_aoa
: ' v 4

A crystal structure from from July 2004
shows that an error correcting (and
error-prone) DNA polymerase uses
Hoogsteen-WC base pairing to
recognize the incoming substrate dNTP.

This supports biochemical studies that
had been suggesting such a pairing.

This polymerase is good at bypassing
lesions in the DNA.




Why is Watson-Crick so good?
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Why is the major groove so good?

Major Groove
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Ribosome

exit tunnel
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Supercoiling
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Supercoiling
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RNA Splicing
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