Chem 111

10:10a section

Final Exam

This exam is composed of 50 questions. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations. Periodic table, solubility rules, and valuable constants are on the last page of the exam. Feel free to tear it off.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

1. The average molecular speed in a sample of N_{2} gas is $478 \mathrm{~m} / \mathrm{s}$ at 303 K .

The average molecular speed in a sample of CO_{2} gas at the same temperature is:

1) $304 \mathrm{~m} \mathrm{~s}^{-1}$
2) $381 \mathrm{~m} \mathrm{~s}^{-1}$
3) $478 \mathrm{~m} \mathrm{~s}^{-1}$
4) $326 \mathrm{~m} \mathrm{~s}^{-1}$
5) $600 \mathrm{~m} \mathrm{~s}^{-1}$
(2) Same temperature means same kinetic energy, so
(OWL 12-6d)

$$
\begin{aligned}
& K E=\frac{1}{2} m_{N_{2}} u_{N_{2}}^{2}=\frac{1}{2} m_{\mathrm{CO}_{2}} u_{\mathrm{CO}_{2}}^{2} \\
& u_{\mathrm{CO}_{2}}^{2}=\frac{m_{N_{2}}}{m_{\mathrm{CO}_{2}}} u_{N_{2}}^{2}=\frac{\left(2 \times 14.01 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{\left(12.01 \mathrm{~g} \mathrm{~mol}^{-1}\right)+\left(2 \times 16.00 \mathrm{~g} \mathrm{~mol}^{-1}\right)}\left(478 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\
& =145500\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=\left(381 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}
\end{aligned}
$$

2. A 1.28 mol sample of Ar gas is confined in a 31.5 liter container at $26.5^{\circ} \mathrm{C}$. If 1.28 mol of F_{2} gas is added while doubling the volume and keeping the temperature constant, the average kinetic energy per molecule will:
1) decrease
2) remain the same
3) increase
4) not enough information
5) I don't have a clue
(2) Temperature determines average kinetic energy

Chapter 12
3. A sample of Cl_{2} gas is confined in a 2.0 liter container at $50^{\circ} \mathrm{C}$. Then 2.5 mol of He is added, holding both the volume and temperature constant. The pressure will increase because:

1) As the number of molecule-wall collisions increases, the force per collision increases.
2) With more molecules per unit volume, the molecules hit the walls of the container more often.
3) With more molecules in the container, the molecules have higher average speeds.
4) With higher average speeds, on average the molecules hit the walls of the container with more force.
5) None of the Above
4. A 1.96 mol sample of CO_{2} gas is confined in a 49.1 liter container at $32.3^{\circ} \mathrm{C}$. If the temperature of the gas sample is increased to $55.0^{\circ} \mathrm{C}$, holding the volume constant, the pressure will increase because:
1) With higher average speeds, on average the molecules hit the walls of the container with more force.
2) With lower average speeds, the molecules hit the walls of the container less often.
3) As the average speed increases, the number of molecule-wall collisions decreases.
4) None of the above

Chapter 12

5. In our bodies, sugar is broken down with oxygen to produce water and carbon dioxide. How many moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ are required to react completely with 42.8 L of oxygen gas $\left(\mathrm{O}_{2}\right)$ according to the following reaction at $0{ }^{\circ} \mathrm{C}$ and 1 atm pressure? Note that the reaction may need balancing.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

1) 6.0 mol
2) 0.250 mol
3) 0.319 mol
4) 0.637 mol
5) 7.13 mol
(3) First, balance the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

6 mol of oxygen reacts with 1 mol of glucose, so first find the the number of moles of O_{2} gas: $n=\frac{P V}{R T}=\frac{(1 \mathrm{~atm})(42.8 \mathrm{~L})}{\left(0.0820{\left.\mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273 \mathrm{~K})}^{2}\right.}=1.91 \mathrm{~mol}$

Therefore, we need $\left(\frac{1}{6}\right) 1.91 \mathrm{~mol}=0.319 \mathrm{~mol}$
OWL 12-3b
6. What is the total volume of gaseous products formed when 190 L of bromine trifluoride $\left(\mathrm{BrF}_{3}\right)$ react completely to form Br_{2} and F_{2} ? (All gases are at the same temperature and pressure, before and after.)

1) 85 L
2) 190 L
3) 380 L
4) 320 L
5) 160 L
(3) First, write a balanced equation:

$$
2 \mathrm{BrF}_{3}->\mathrm{Br}_{2}+3 \mathrm{~F}_{2}
$$

Look at mole ratios. 4 moles of gases are derived from 2 moles of reactants.
Therefore, the volume should double.
OWL 12-3b
7. The temperature of the atmosphere on Mars can be as high as $27^{\circ} \mathrm{C}$ at the equator at noon, and the atmospheric pressure is about 8.0 mm of Hg . If a spacecraft could collect $10.0 \mathrm{~m}^{3}$ of this atmosphere, compress it to a small volume, and send it back to earth, about how many moles would the sample contain?

1) 4.3 mol
2) 97 mol
3) 54 mol
4) 0.13 mol
5) 1.2 mol
$n=\frac{P V}{R T}=\frac{(8.0 \mathrm{~mm})\left(10.0 \mathrm{~m}^{3}\right)}{\left(0.0820 \mathrm{~atm} L K^{-1} \mathrm{~mol}^{-1}\right)(27+273) K}\left(\frac{\mathrm{~atm}}{760 \mathrm{~mm}}\right)\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)^{3}\left(\frac{L}{1000 \mathrm{~cm}^{3}}\right)$
$n=4.28 \mathrm{~mol}$
(1)

Chapter 12
8. HNO_{3} is (a table on page 1 provides a clue):

1) a strong base
2) a weak base
3) a strong acid
4) a weak acid
5) none of the above
(3)

Chapter 5
9. The concentration of H^{+}in table wine (pH 3.4) is:

1) $3.40 \times 10^{9} \mathrm{M}$
2) $3.40 \times 10^{-9} \mathrm{M}$
3) $3.98 \times 10^{4} \mathrm{M}$
4) $3.98 \times 10^{-4} \mathrm{M}$
5) $1.00 \times 10^{-7} \mathrm{M}$
(4)

Chapter 5
Problem 72
10. Reactions in water that produce gases tend to be:

1) unfavorable
2) favorable
3) ugly
4) endothermic
5) exothermic
(2)

Chapter 5
11. Mixing $\mathrm{Na}_{2} \mathbf{S}$ with $\mathbf{N H}_{4} \mathbf{C l}$ in water leads to precipitation of:

1) a S^{2-} salt
2) a Na^{+}salt
3) aCl^{-}salt
4) everything precipitates
5) no precipitation
12. You need to make an aqueous solution of 0.131 M ammonium sulfide for an experiment in lab, using a 250 mL volumetric flask. How much solid ammonium sulfide should you add?
1) 2.23 g
2) 3.15 g
3) 1.24 g
4) 2.74 g
5) 9.11 g

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S} \quad \text { Molar Mass }=2(14.01+4(1.008))+32.07=68.15 \mathrm{~g} \mathrm{~mol}^{-1} \\
& x\left(\frac{\mathrm{~mol}}{68.15 \mathrm{~g}}\right)\left(\frac{1}{250 \mathrm{~mL}}\right)\left(\frac{1000 \mathrm{~mL}}{L}\right)=0.131 \frac{\mathrm{~mol}}{\mathrm{~L}} \\
& x=2.23 \mathrm{~g}
\end{aligned}
$$

13. Which of the following describes the compound $\mathbf{B a}\left(\mathbf{N O}_{3}\right)_{2}$?
1) If the compound dissolved in water it would not conduct electricity.
2) The compound is ionic.
3) If the compound dissolved in water it would be a non-electrolyte.
4) The compound is molecular.
5) Both (1) and (2)
(OWL question, Chapter 3)
14. Which reaction below is a redox reaction?
1) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NaClO}_{4}$
3) $\mathrm{CdCl}_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{CdS}(\mathrm{s})+2 \mathrm{NaCl}(\mathrm{aq})$
4) $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{ZnSO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$ (l)
5) None of the above
(5) Look at redox changes - there are none.

Chapt 5 inspired by book
15. The net ionic equation for the reaction of zinc sulfate and sodium hydroxide is:

1) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
2) $\mathrm{ZnSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
3) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})$
4) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$
5) No net reaction occurs
(4) hydroxide salts are generally insoluble
(OWL 5-2c)
16. In an exothermic process:
1) work is performed on the surroundings
2) heat is transferred to the surroundings
3) work is performed on the system
4) heat is transferred to the system

Chapter 6
17. Change in internal energy is best described as:

1) $\Delta \mathrm{H}$
2) q
3) w
4) $q+w$
5) ΔG
(4) ΔE is change in internal energy. $\Delta E=q+w$

Chapter 6
\qquad
18. A positive value of $\Delta \mathrm{E}$ means that:

1. heat is tranferred to the surroundings
2. heat is transfered to the system
3. energy in the form of heat and/or work is transferred to the surroundings
4. energy in the form of heat and/or work is transferred to the system

Chapter 6
19. An automobile engine generates $\mathbf{2 1 6 0}$ Joules of heat that must be carried away by the cooling system. The internal energy changes by $\mathbf{- 2 7 5 8}$ Joules in this process.
How much work to push the pistons is available in this process ?

1) 4918 J
2) 598 J
3) 2758 J
4) 2160 J
5) 4320 J
$\Delta E=q+w \quad w=\Delta E-q=(-2758 J)-(-2160 J)=-598 J$
(2) w is negative. The system does work on the surroundings.

Chapter 6
20. Given the standard molar enthalpies of formation shown at right, determine $\Delta \mathrm{H}$ for the reaction:

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} 0(\mathrm{~g})
$$

1) $-530.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $+530.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $-2043 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) $+2043 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Subst	$\Delta \mathrm{H}_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$	-104.70
$\mathrm{CO}_{2}(\mathrm{~g})$	-393.51
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	-241.83
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.83

5) not enough information to determine
(3) $[3(-393.51)+4(-241.83)]-[(-104.70)+5(0)]=-2043$ kJ mol $^{-1} \quad$ Chapt 6
21. Given the information above, what is the heat required to vaporize water at 298 K ?
1) $-40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) $-44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) not enough information to determine
(3) $(-241.83)-(-285.83)=44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
22. A 45.5 g sample of copper at $99.8^{\circ} \mathrm{C}$ is dropped into a beaker containing 152 g of water at $18.5^{\circ} \mathrm{C}$. When thermal equilibrium is reached, what is the final temperature of the copper? The specific heat capacities of water and copper are 4.184 and $0.385 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, respectively.
1) $25.3^{\circ} \mathrm{C}$
2) $12.5^{\circ} \mathrm{C}$
3) $37.0^{\circ} \mathrm{C}$
4) $90.1^{\circ} \mathrm{C}$
5) $20.7^{\circ} \mathrm{C}$
$q_{\text {metal }}+q_{\text {water }}=0$
$\left(0.385 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}\right)(45.5 g)(x-99.8) K+\left(4.184 \mathrm{Jg}^{-1} K^{-1}\right)(152 g)(x-18.5) K=0$
$(x-99.8) K=\frac{-\left(4.184 \mathrm{Jg}^{-1} K^{-1}\right)}{\left(0.385 \mathrm{Jg}^{-1} K^{-1}\right)} \frac{(152 g)}{(45.5 g)}(x-18.5) K=-36.30(x-18.5) K$
$x-99.8=-36.30 x-(18.5)(-36.30)$
$x+36.30 x=99.8+671.6=771.4$
$x=20.7$
(5)

Chapt 6 Problem 20 at end of chapter. See also example 6.2

23. Given the following information:

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=9.2 \mathrm{~kJ} \\
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-164.2 \mathrm{~kJ}
\end{array}
$$

what is the standard enthalpy change for the reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=?
$$

1) $-155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $-146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) not enough information to determine
$2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=2(9.2) \mathrm{kJ}$
$2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=-164.2 \mathrm{~kJ}$
(2) $\quad \Delta \mathrm{H}^{\circ}=(18.4-164.2) \mathrm{kJ} \mathrm{mol}^{-1}=-145.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$

OWL 6-6c
24. Which of the following has the weakest bond?

1) HF
2) HCl
3) HBr
4) HI
(4) - longest bond, weakest bond OWL 9-xx
25. Being careful to consider molecular orbital theory (or at least valence bond theory), which of the following has the shortest bond length?
1) B_{2}
2) C_{2}
3) N_{2}
4) O_{2}
5) F_{2}
(3) N_{2} - triple bond OWL 9-xx
\qquad
26. The central CO bond in the molecule $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$ is best described as a:
1) single bond
2) double bond
3) triple bond
4) ionic bond
5) the molecule doesn't exist

From OWL units 9-1d and 9-2b. See Study Questions 13-14, Chapter 9
27. Draw the Lewis structure for $\mathbf{C O}^{2-}$. What is the bond order of the CO bond?

1) single
2) double
3) triple
(2) double $\left[\stackrel{\circ}{C}=\mathrm{O}^{\circ}\right]^{2-}$
(12 valence electrons)
OWL 9-xx
28. Draw the Lewis structure for $\mathbf{X e O F}_{4}$ (Xe is the central atom). What is the hybridization on Xe ?
1) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
2) $\mathrm{sp}^{3} d^{2}$
3) $\mathrm{sp}^{3} d$
4) $s p^{3}$
5) sp^{2}

(2)

OWL 9-xx
29. The molecule XeOF_{4} is:

1) polar
2) nonpolar
3) can't tell
(1) polar - the individual dipoles do not cancel out.

OWL 9-10b
30. A molecule has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization with one lone pair. The electron pair geometry of this molecule is:

1) tetrahedral
2) octahedral
3) linear
4) square pyramidal
5) trigonal bipyramidal
from OWL 10-2b
31. Using molecular orbital theory, what is the bond order in the anion $\mathbf{F}_{\mathbf{2}}{ }^{-}$?
1) 0.5
2) 1.0
3) 1.5
4) 2
5) 0
\qquad
32. Consider the unbalanced equation:

$$
\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

In the balanced equation, the coefficient in front of $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})$ is:

1) 1
2) 2
3) 3
4) 4
5) 6

$$
\begin{equation*}
2 \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq}) \tag{2}
\end{equation*}
$$

OWL 10-xx
33. Considering that same reaction

$$
\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{I}_{2}(\mathrm{aq}) \rightarrow \mathrm{S}_{4} \mathrm{O}_{6}{ }^{2-}(\mathrm{aq})+\mathrm{I}^{-}(\mathrm{aq})
$$

An oxidizing agent in this reaction is:

1) $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
2) I_{2}
3) neither
(2) I_{2} is reduced. It is an oxidizing agent

OWL 10-xx
34. Which radiation below has the shortest wavelength?

1) blue light $\left(6.8 \times 10^{14} \mathrm{~Hz}\right)$
2) microwaves $\left(2.4 \times 10^{9} \mathrm{~Hz}\right)$
3) green light $\left(6.0 \times 10^{14} \mathrm{~Hz}\right)$
4) x-rays $\left(5.0 \times 10^{18} \mathrm{~Hz}\right)$
5) red light $\left(4.5 \times 10^{14} \mathrm{~Hz}\right)$
(5) It has the highest frequency. Remember that $\lambda=c / v$

From OWL Unit 7-1b (and from last exam)
35. What is the wavelength of visible light with frequency $5.00 \times 10^{14} \mathrm{~Hz}$?

1) 600 nm
2) 300 nm
3) 500 nm
4) 162 nm
5) 280 nm

$$
\text { (1) } \begin{aligned}
& \lambda=\left(\frac{2.9998 \times 10^{8} \mathrm{~m}}{s}\right)\left(\frac{1}{5.00 \times 10^{14} \mathrm{~Hz}}\right)\left(\left(\frac{H z}{1} \frac{s}{1}\right)=6.00 \times 10^{-7} \mathrm{~m}\right. \\
& =6.00 \times 10^{-7} \mathrm{~m}\left(\frac{10^{9} \mathrm{~nm}}{\mathrm{~m}}\right)=600 \mathrm{~nm}
\end{aligned}
$$

36. Consider the diagram at right. The transition labeled A is best described as :
1) emission
2) absorption
3) ionization
4) electron capture

From OWL Unit 7-4c

\qquad
37. The principle quantum number n specifies:

1) orbital orientation
2) subshell orbital shape
3) transition probability
4) orbital karma
5) energy and distance from nucleus

From OWL Unit 7-7b
38. The correct spectroscopic notation for the sulfur ion S^{2-} is:

1) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
2) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
3) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
4) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
5) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(5)

From OWL Unit 8-7c
39. Which of the following elements has the greatest difference between the first and second ionization energies?

1) Na
2) Si
3) P
4) Mg
5) Cl

See Study Questions 67-68 \& 72, Chapter 8 of K\&T
40. Which list below is in order of increasing electron affinity?

1) $\mathrm{Si}<\mathrm{P}<\mathrm{S}<\mathrm{Cl}$
2) $\mathrm{Ne}<\mathrm{F}<\mathrm{O}<\mathrm{N}$
3) $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$
4) $\mathrm{Be}<\mathrm{Mg}<\mathrm{Ca}<\mathrm{Sr}$
5) none of the above

Chapter 8
41. Which list below is in order of increasing ionization energy?

1) $\mathrm{Cl}<\mathrm{S}<\mathrm{P}<\mathrm{Si}$
2) $\mathrm{Ne}<\mathrm{F}<\mathrm{O}<\mathrm{N}$
3) $\mathrm{F}<\mathrm{Cl}<\mathrm{Br}<$ I
4) $\mathrm{Sr}<\mathrm{Ca}<\mathrm{Mg}<\mathrm{Be}$
5) none of the above

Chapter 8
42. Which molecule below does not exist?

1) BeF_{2}
2) CaF_{3}
3) MgO
4) KCl
5) BeCl_{2}
(2) See Study Question 33, Chapter 9 of K\&T - think about ionization required to make ionic compounds (Chapt 9.3)
43. The molecule HF can be thought of as having both ionic and covalent character. Given that statement, which of the following is likely to best describe the charge on each atom?

	\mathbf{H}	F
$1)$	+1.0	-1.0
$2)$	+0.7	-0.7
$3)$	0.0	0.0
$4)$	-0.7	+0.7
$5)$	-1.0	+1.0

(2) This question is intended to get you thinking about concepts we will need in the next chapter. The key here is BOTH ionic and covalent. Answers (4) and (5) should be immediately eliminated - F wants to be negative, H positive. If the molecule were purely covalent (as in FF), (3) would be correct - but the molecule is not purely covalent. If the molecule were purely ionic (as in NaCl), (1) would be correct - but the molecule is not purely ionic. This leaves (2) as the only reasonable answer.
44. What is the most common charge of ions formed from $\mathbf{S r}$?

1) +1
2) +2
3) -1
4) -2
5) -3
(2) $\mathbf{+ 2}$
(OWL question, Chapter 3)
45. What is the formula of the compound formed between the ions $\mathbf{C o}{ }^{3+}$ and \mathbf{O}^{2-} ?
1) CoO
2) $\mathrm{Co}_{2} \mathrm{O}$
3) $\mathrm{Co}_{2} \mathrm{O}_{3}$
4) $\mathrm{Co}_{3} \mathrm{O}_{2}$
5) CoO_{2}
(3) $\mathrm{Co}_{2} \mathrm{O}_{3} \rightarrow 2 \mathrm{Co}^{3+}+3 \mathrm{O}^{2-}$
(OWL question, Chapter 3)
46. What is the molar mass of nitrogen dioxide?
1) $62 \mathrm{~g} / \mathrm{mol}$
2) $32 \mathrm{~g} / \mathrm{mol}$
3) $44 \mathrm{~g} / \mathrm{mol}$
4) $16 \mathrm{~g} / \mathrm{mol}$
5) $46 \mathrm{~g} / \mathrm{mol}$
(5) NO_{2}

$$
1\left(14.0067 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+2\left(16.00 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=46.0 \frac{\mathrm{~g}}{\mathrm{~mol}}
$$

(OWL, Chapt 3)
47. A sample of citric acid, $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{7}}$, contains 0.153 mol of the compound. What is the mass of this sample, in grams?

1) 3.02 g
2) 13.7 g
3) 29.4 g
4) 0.0730 g
5) 20.2 g

First we need the molar mass of citric acid:

$$
\begin{aligned}
& 6(\text { molar mass of } \mathrm{C})+8(\text { molar mass of } \mathrm{H})+7(\text { molar mass of } \mathrm{O})= \\
& 6\left(12.011 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+8\left(1.0079 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+7\left(15.9994 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=192.12 \frac{\mathrm{~g}}{\mathrm{~mol}}
\end{aligned}
$$

Use that to calculate the mass:

$$
\begin{equation*}
(0.153 \mathrm{~mol})\left(\frac{192.12 g}{m o l}\right)=29.4 g \tag{3}
\end{equation*}
$$

(OWL question, Chapt 3)
48. What is the (mass) percent composition of \mathbf{H} in citric acid, $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{7}}$?

1) 6.87%
2) 4.20%
3) 38.1%
4) 30.6%
5) 6.00%
(2) Mass of H in 1 mol of the compound: $(8 \mathrm{~mol})(1.008 \mathrm{~g} / \mathrm{mol})=8.06 \mathrm{~g}$

Mass of 1 mol of the compound: 192.12 g (see above)
Percent composition: $\frac{8.06 g \mathrm{C}}{192 g} 100 \%=4.20 \%$
(OWL question, Chapt 3)
49. Ethylene glycol, $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$, is an ingredient in automobile antifreeze. Its density is 1.11 $\mathrm{g} / \mathrm{cm}^{3}$ at $20^{\circ} \mathrm{C}$. If you need exactly 1000 mL of ethylene glycol, what mass of the compound, in grams, is required?

1) 901 g
2) 90.1 g
3) 111 g
4) 1110 g
5) 1000 g
(4) $1000 m L\left(\frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}\right)\left(\frac{1.11 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)=1110 \mathrm{~g}$
(book question, Chapt 2)
50. The correct designator for this course is:
1) Econ 3.33
2) Chem 363
3) Chem 111
4) Sports 1
5) SOM 555
(3)

$$
\begin{array}{lll}
P V=n R T & K . E .=\frac{1}{2} \mathrm{mu}^{2} & 1 \mathrm{~mL}=1 \mathrm{~cm}^{3} \\
& 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} & h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\
E=h v=\frac{h c}{\lambda} & & \Delta H_{\text {vap }}\left(\mathrm{H}_{2} \mathrm{O}\right)=40.65 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \Delta H_{\text {fus }}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.00 \mathrm{~kJ} \mathrm{~mol}^{-1} & \mathrm{~N}=6.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
& \Delta E=q+w=\Delta H-P \Delta V & R=0.0820 \mathrm{~L} \mathrm{~atm}^{-1} \mathrm{~mol}^{-1} \\
& & R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{array}
$$

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1. All sodium $\left(\mathrm{Na}^{+}\right)$, potassium $\left(\mathrm{K}^{+}\right)$, and ammonium $\left(\mathrm{NH}_{4}^{+}\right)$salts are SOLUBLE.
2. All nitrate $\left(\mathrm{NO}_{3}^{-}\right)$, acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$, and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts are SOLUBLE.
3. All chloride $\left(\mathrm{Cl}^{-}\right)$, bromide $\left(\mathrm{Br}^{-}\right)$, and iodide $\left(\mathrm{I}^{-}\right)$salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) $\left(\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}\right)$ which are NOT soluble.
4. All sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ salts are SOLUBLE - - EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead $\left(\mathrm{Ca}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ which are NOT soluble.

Not Soluble Ionic Compounds

5. Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
6. Sulfide (S^{2-}) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
7. Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}\right)$, which are soluble.

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
$\begin{array}{\|l\|} \hline 1 \\ \hline \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	
$\begin{array}{\|l\|} \hline \mathbf{3} \\ \mathbf{L i} \\ 6.939 \\ \hline \end{array}$												$\begin{aligned} & 5 \\ & \mathrm{~B} \\ & 10.81 \\ & \hline \end{aligned}$	6 C 12.01	$\begin{aligned} & 7 \\ & \mathrm{~N} \\ & \mathbf{1 4 . 0 1} \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \mathbf{O} \\ & 16.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 9 \\ & \mathbf{F} \\ & 19.00 \\ & \hline \end{aligned}$	$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & \mathbf{2 0 . 1 8} \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline 11 \\ \mathrm{Na} \\ \hline 22.99 \\ \hline \end{array}$	$\begin{aligned} & 12 \\ & \mathbf{M g} \\ & 24.31 \\ & \hline \end{aligned}$											13 Al 26.98	14 Si	15 P 30.97	16 S 32.07	17 Cl 35.45	18 Ar 39.95
19 \mathbf{K} $\begin{array}{\|l\|l\|} \hline 39.10 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 40.08 \\ & \hline \end{aligned}$	21 Sc 44.96	$\begin{aligned} & 22 \\ & \mathrm{Ti} \\ & \mathbf{4 7 . 9 0} \\ & \hline \end{aligned}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \mathbf{5 0 . 9 4} \\ \hline \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \\ & \mathbf{5 2 . 0 0} \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	27 Co 58.93	$\begin{aligned} & \mathbf{2 8} \\ & \mathbf{N i} \\ & \mathbf{5 8 . 7 1} \\ & \hline \end{aligned}$	29 Cu 63.55	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & \mathbf{6 5 . 3 9} \\ & \hline \end{aligned}$	31 Ga 69.72	32 Ge 72.61	33 As 74.92	$\begin{aligned} & 34 \\ & \mathrm{Se} \\ & 78.96 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & \mathrm{Br} \\ & 79.90 \end{aligned}$	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	$\begin{gathered} 39 \\ \mathbf{Y} \\ \mathbf{8 8 . 9 1} \\ \hline \end{gathered}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & \mathbf{9 1 . 2 2} \end{aligned}$	41 Nb 92.91	$\begin{aligned} & 42 \\ & \mathbf{M o} \\ & \mathbf{9 5 . 9 4} \\ & \hline \end{aligned}$	43 Tc (99)	$\begin{aligned} & 44 \\ & \mathrm{Ru} \\ & 101.1 \\ & \hline \end{aligned}$	45 Rh 102.9	46 Pd 106.4	$\begin{aligned} & 47 \\ & \mathbf{A g} \\ & 107.9 \end{aligned}$	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	$\begin{aligned} & 54 \\ & \mathbf{X e} \\ & 131.3 \end{aligned}$
55 Cs 132.9	56 Ba 137.3	57 La 138.9	72 Hf 178.5	73 Ta 181.0	$\begin{gathered} 74 \\ \mathbf{W} \\ \mathbf{1 8 3 . 8} \end{gathered}$	75 Re 186.2	76 Os 190.2	$\begin{aligned} & 77 \\ & \mathbf{I r} \end{aligned}$ 192.2	$\begin{aligned} & 78 \\ & \mathbf{P t} \\ & 195.1 \\ & \hline \end{aligned}$	79 Au 197.0	80 $\mathbf{H g}$ 200.6	81 Tl 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	105 Unp (262)	106 Unh (263)	107 Uns (262)	108 Uno (265)	109 Une (266)									

