\qquad

This exam is composed of 20 questions, 5 of which require mathematics that might require a calculator. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.

$E=h v=\frac{h c}{\lambda}$	Some common ions:		$h=6.626 \times 10^{-34} \mathrm{Js}$
	PO_{4}	CN^{-}	$c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$E_{n}^{H-\text { atom }}=-\frac{R_{H} h c}{n^{2}}$	NO_{2}	NO_{3}^{-}	$N=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	SO_{3}	$\mathrm{SO}_{4}{ }^{2-}$	$R_{H}=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1. What is the charge of the most common ion formed from \mathbf{S} ?
1) -1
2) -2
3) +1
4) +2
5) +3
2. What is the charge of the most common ion formed from Ba?
1) +1
2) +2
3) -1
4) -2
5) -3
3. The correct molecular formula for the molecule at right is:
1) $\mathrm{C}_{3} \mathrm{OH}_{8}$
2) $\mathrm{C}_{3} \mathrm{OH}_{7}$
3) $\mathrm{C}_{3} \mathrm{O}_{2} \mathrm{H}_{7}$
4) $\mathrm{C}_{3} \mathrm{OH}_{6}$

4. Which choice below best (most accurately and completely) describes a proton?
1) a charged particle
2) a wave
3) a negatively charged particle with both wave and particle properties
4) a small particle that lies at the heart of the nucleus of an atom
5) a positively charged particle that resides at the nucleus of an atom
5. $\mathbf{C C l}_{4}$ is:
1) an element
2) a homogeneous mixture
3) an ionic compound
4) a heterogeneous mixture
5) a nonionic compound
6. What is the formula of the ionic compound expected to form between the ions $\mathbf{B e}^{\mathbf{2 +}}$ and $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$?
1) $\mathrm{Be}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
2) $\mathrm{Be}_{2} \mathrm{SO}_{4}$
3) $\mathrm{Be}\left(\mathrm{SO}_{4}\right)_{2}$
4) BeSO_{4}
5) $\mathrm{Be}_{2} \mathrm{SO}_{2}$
7. What is the formula of the ionic compound formed in the reaction of elemental $\mathbf{C a}$ and \mathbf{F} ?
1) CaF
2) $\mathrm{Ca}_{2} \mathrm{~F}$
3) $\mathrm{Ca}_{2} \mathrm{~F}_{3}$
4) $\mathrm{Ca}_{3} \mathrm{~F}_{2}$
5) CaF_{2}
8. What is the formula of the ionic compound formed between the ions $\mathbf{C r}^{3+}$ and $\mathbf{N O}_{2}{ }^{-}$?
1) CrNO_{2}
2) $\mathrm{Cr}_{2} \mathrm{NO}_{2}$
3) $\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{3}$
4) $\mathrm{Cr}\left(\mathrm{NO}_{2}\right)_{5}$
5) $\mathrm{Cr}_{2}\left(\mathrm{NO}_{2}\right)_{5}$
9. Which of the following is not an ionic compound?
1) $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$
2) NaCN
3) CO
4) AgO
5) AgCl
10. What is the formula for the hydrogen carbonate ion ?
1) HCO_{3}^{-}
2) $\mathrm{H}_{2} \mathrm{CO}_{3}^{-}$
3) $\mathrm{H}_{3} \mathrm{CO}_{3}$
4) HCO_{3}
5) $\mathrm{CO}_{3}{ }^{2-}$
\qquad
11. What is the molar mass of selenium (Se) dioxide?
1) $64 \mathrm{~g} / \mathrm{mol}$
2) $111 \mathrm{~g} / \mathrm{mol}$
3) $96 \mathrm{~g} / \mathrm{mol}$
4) $16 \mathrm{~g} / \mathrm{mol}$
5) $44 \mathrm{~g} / \mathrm{mol}$
12. Which of the following is a valid empirical formula?
1) $\mathrm{Co}_{8}\left(\mathrm{SO}_{3}\right)_{24}$
2) $\mathrm{Co}_{4}\left(\mathrm{SO}_{3}\right)_{6}$
3) $\mathrm{Co}_{6}\left(\mathrm{SO}_{3}\right)_{9}$
4) none is valid
5) all are valid
13. A sample of citric acid, $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{9}} \mathbf{O}_{7}$, contains 0.104 mol of the compound. What is the mass of this sample, in grams?
1) 20.1 g
2) 12.5 g
3) 37.3 g
4) 0.0730 g
5) 18.7 g
14. What is the (mass) percent composition of \mathbf{C} in $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{9}} \mathbf{O}_{\mathbf{7}}$?
1) 9%
2) 37.3%
3) 61.2%
4) 81.8%
5) 60.0%
\qquad
15. You've decided you don't like Chemistry after all and have decided to travel Europe instead. You're driving a rental car through France and see petrol
0.88 euro $=1.0$ US dollar 4.546 liters $=1$ gallon selling at 0.85 euros per liter.
How much does petrol cost in U.S. dollars per gallon?
1) $\$ 3.87 / \mathrm{gal}$
2) $\$ 0.69 / \mathrm{gal}$
3) $\$ 2.44 / \mathrm{gal}$
4) $\$ 3.15 / \mathrm{gal}$
5) $\$ 4.39 / \mathrm{gal}$
16. Which radiation below has the highest energy (don't use your calculator!)?
1) blue light $\left(6.8 \times 10^{14} \mathrm{~Hz}\right)$
2) microwaves $\left(2.4 \times 10^{9} \mathrm{~Hz}\right)$
3) green light $\left(6.0 \times 10^{14} \mathrm{~Hz}\right)$
4) x-rays $\left(5.0 \times 10^{18} \mathrm{~Hz}\right)$
5) red light $\left(4.5 \times 10^{14} \mathrm{~Hz}\right)$
17. What is the wavelength of ultraviolet light with frequency $1.20 \times 10^{15} \mathrm{~Hz}$?
1) 209 nm
2) 300 nm
3) 500 nm
4) 162 nm
5) 250 nm
18. What is the wavelength of the photon emitted from a hydrogen atom when the electron goes from $n=9$ to $n=3$?
The Rydberg constant R for the hydrogen atom is $1.097 \times 10^{7} \mathrm{~m}^{-1}$.
1) 0.023 nm
2) 397 nm
3) 434 nm
4) 923 nm
5) 22 nm
19. In the above question, is light emitted or absorbed?
1) absorbed
2) emitted
3) neither absorbed nor emitted
4) can't tell
20. What is the catalog number for this class?
1) 241
2) 111
3) 222
4) 3.14159
5) 68.6 g
\qquad

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
$\begin{array}{\|l\|} \hline 1 \\ \hline \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	He 4.003
$\begin{array}{\|l\|} \hline \mathbf{3} \\ \mathbf{L i} \\ 6.939 \\ \hline \end{array}$	Be 9.012											$\begin{array}{\|l\|} \hline 5 \\ \text { B } \\ 10.81 \\ \hline \end{array}$	${ }^{6} \mathrm{C}$ 12.01	$\begin{array}{\|l} \hline 7 \\ \mathrm{~N} \\ 14.01 \\ \hline \end{array}$	${ }^{8}$ O 16.00	$\begin{aligned} & 9 \\ & \mathbf{F} \\ & 19.00 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 10 \\ \mathbf{N e} \\ 20.18 \end{array} \\ & \hline \end{aligned}$
$\begin{array}{\|l} \hline 11 \\ \mathrm{Na} \\ \hline 22.99 \\ \hline \end{array}$	$\begin{aligned} & \hline 12 \\ & \mathbf{M g} \\ & \mathbf{M g} \\ & \hline 24.31 \\ & \hline \end{aligned}$											$\begin{array}{\|l\|} \hline 13 \\ \text { Al } \\ \text { Al } \\ 26.98 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ \mathbf{S i} \end{array}$ 28.09	$\begin{aligned} & 15 \\ & \mathbf{P} \end{aligned}$ 30.97	$\begin{array}{\|l\|} \hline 16 \\ \mathbf{S} \\ \hline 32.07 \\ \hline \end{array}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & 35.45 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{1 8} \\ & \mathbf{A r} \\ & 3995 \end{aligned}$
$\begin{array}{\|c\|} \hline 19 \\ \mathbf{K} \\ \hline 39.10 \\ \hline \end{array}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & \mathrm{Ca} \\ & 40.08 \end{aligned}$	$\begin{aligned} & 21 \\ & \mathbf{S c} \end{aligned}$ 44.96	$\begin{aligned} & 22 \\ & \mathbf{T i} \end{aligned}$ 47.90	$\begin{aligned} & \begin{array}{c} 23 \\ \mathbf{V} \\ 50.94 \\ 5 \end{array} \end{aligned}$	$\begin{aligned} & \begin{array}{l} 24 \\ \mathbf{C r} \\ 52.00 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 25 \\ & \mathbf{M n} \\ & { }_{51} 509 \end{aligned}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \end{aligned}$	$\begin{array}{\|l\|} \hline 27 \\ \mathbf{C o} \end{array}$	$\begin{array}{\|l} \hline 28 \\ \mathbf{N i} \\ \mathbf{N} \\ \hline 8.7 \end{array}$	$\begin{array}{\|l} \begin{array}{l} 29 \\ \mathbf{C u} \\ 63.55 \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 30 \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline 31 \\ \mathbf{G a} \\ 69.72 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 32 \\ \mathbf{G e} \\ 72.61 \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 33 \\ \text { As } \\ 74.92 \\ \hline \end{array}$	34 Se Se 78.9	$\begin{aligned} & \begin{array}{l} 35 \\ \mathbf{B r} \\ 79.90 \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 36 \\ \mathbf{K r} \\ 83.80 \end{array} \\ & \hline \end{aligned}$
$\begin{array}{\|l\|l} \hline 37 \\ \mathbf{R b} \\ 85.47 \\ \hline \end{array}$	$\stackrel{38}{\mathrm{Sr}}$ 87.62	$\begin{gathered} { }_{39}^{\mathbf{Y}} \\ 88.91 \end{gathered}$	$\begin{aligned} & { }^{40} \\ & \mathbf{Z r} \end{aligned}$ 91.22	$\begin{aligned} & { }^{41} \mathbf{N b} \\ & 92.91 \end{aligned}$	$\begin{array}{\|l\|l} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{array}$	$\begin{aligned} & 43 \\ & \mathbf{T c} \end{aligned}$	$\begin{array}{\|l} \hline 44 \\ \mathbf{R u} \end{array}$ 101.1	$\begin{array}{\|l\|} \hline \mathbf{4 5} \\ \mathbf{R h} \\ \hline 102.9 \\ \hline \end{array}$	46 Pd 106 18	$\begin{array}{\|l} 47 \\ \mathbf{A g} \\ 107.9 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 48 \\ \mathbf{C d} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0,1 / 2 \\ \hline \text { In } \\ \hline \end{array}$ 114.8	$\begin{array}{\|l\|l} \hline 50 \\ \mathbf{5 0} \\ \mathbf{S n} \\ 118.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} 51 \\ \mathbf{S b} \end{array}$ 121.8	52 Te 127. 6	$\begin{gathered} \hline 53 \\ \text { I } \\ \text { 126.9.9 } \end{gathered}$	$\begin{aligned} & \text { 54 } \\ & \mathbf{X e} \\ & 131.3 \\ & \hline \end{aligned}$
${ }^{55}$	$\begin{aligned} & { }^{56} \\ & \text { Ba } \end{aligned}$ 137.3	$\begin{aligned} & 57 \\ & \mathbf{L a} \\ & \text { i38.9 } \end{aligned}$	72 $\mathbf{H f}$ 178.5	$\begin{aligned} & 73 \\ & \mathbf{T a} \end{aligned}$ 181.0	$\begin{gathered} 74 \\ \mathbf{W} \end{gathered}$	75 $\mathbf{R e}$ 186.2	$\stackrel{76}{\mathrm{O}}$ Os 190.2	$\begin{array}{\|l} \hline 77 \\ \mathbf{I r} \\ 192.2 \\ \hline \end{array}$	78 Pt 195,	79 Au 197.0	80 $\mathbf{H g}$ 200.6	$\begin{array}{\|l\|} 81 \\ \mathbf{T 1} \end{array}$ 204.4	$\begin{array}{\|l\|} \hline 82 \\ \hline \end{array}$ $\mathbf{P b}$ 207.2	$\begin{aligned} & 83 \\ & \hline \mathbf{B i} \end{aligned}$ $\begin{array}{\|l\|l\|l\|} \hline 209.0 \end{array}$	$\begin{aligned} & 84 \\ & \mathbf{P a} \\ & \mathbf{P o} \end{aligned}$ (209)	85 At (210)	${ }^{86}$ Rn (222)
87 Fr \qquad	88 Ra 226.0	${ }^{89}$ Ac 227.0	$\begin{aligned} & \hline 104 \\ & \text { Unq } \\ & (261) \\ & \hline \end{aligned}$	105 Unp (262)	106 Unh (263)	$\begin{array}{\|l} \hline 107 \\ \text { Uns } \\ (262) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 108 } \\ \text { Uno } \\ \hline(265) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 109 \\ \text { Une } \end{array}$ (266)									

