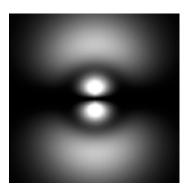
Chem 1119:05a sectionEvening Exam #2v1

This exam is composed of **25** questions. Go initially through the exam and answer the questions you can answer *quickly*. Then go back and try the ones that are more challenging to you and/or that require calculations.

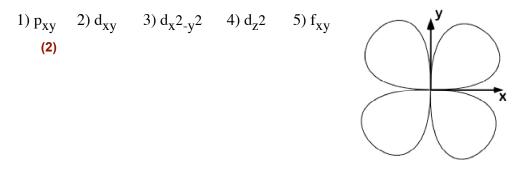
- As discussed on the course syllabus,
honesty and integrity are absolute
essentials for this class. In fairness to
others, dishonest behavior will be dealt
with to the full extent of University $E = hv = \frac{hc}{\lambda}$
 $1 \text{ mL} = 1 \text{ cm}^3$
 $\text{Hz} = \text{s}^{-1}$ $h = 6.626 x 10^{-34} \text{ J s}$
 $c = 2.998 x 10^8 \text{ m s}^{-1}$
 $N = 6.022 x 10^{23} \text{ mol}^{-1}$
 - 1. How many valence electrons are in the O atom?
 - 1) 4 2) 6 3) 8 4) 16 5) 0 (2) $1s^{2}2s^{2}2p^{4}$ n=2 is the valence level. It has 6 electrons
 - 2. Which atom(s) has/have completely filled 3s, 3p, and 3d orbitals?
 - 1) Ar 2) Zn 3) Kr 4) Ar & Zn 5) Kr & Zn (5) Ar: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}$ Zn: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{1}4s^{2}$ Kr: $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{1}4s^{2}4p^{6}$

3. Which element is represented by: $1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^25p^3$

1) Sb 2) Te 3) Br 4) As 5) Se


(1) See p297 to check, but you can read this off the organization of the periodic table.

Page 2 of 6


Name: ____

4. The orbital depicted at right is:

1) 1s 2) 2p 3) 3s 4) 3p 5) 4p (4) 3p - 1 spherical node, 1 planar node

5. The orbital depicted at right is:

6. Which of the following quantum number sets is *not* allowed?

1) n=+3 l=+2 $m_l = -1$ $m_s = +1/2$ 3) n=+3 l=+1 $m_l = -1$ $m_s = -1/2$ 4) n=+2 l=0 $m_l = -1$ $m_s = +1/2$ 5) n=+3 l=0 $m_l = 0$ $m_s = -1/2$

(4) $m_l = -1...0...l$ therefore, with $l=0, m_l$ cannot be -1

7. What is the maximum number of orbitals that can be identified by the set of quantum numbers n=+3 l=+2?

 1) 7
 2) 2
 3) 3
 4) 5
 5) 10

(4) for l = 2, one can have $m_l = -2, -1, 0, +1, +2$ (5 orbitals, with 10 electrons)

8. Which of the following has the shortest bond length?

1) H₂O 2) HF 3) NH₃ 4) CH₄

(2) F is smallest of F, O, N, and C. This allows H and F to approach closest, given that all are *single* bonds.

Name:

- 9. Which of the following has the highest bond energy?
 - 1) B_2 2) C_2 3) N_2 4) O_2 5) F_2 (3) N_2 – triple bond OWL 9-xx
- 10. The CO bond in the molecule CH_3OH is best described as a:

1) triple bond	2) double bond
3) single bond	4) ionic bond

5) the molecule doesn't exist

(3) From OWL units 9-1d and 9-2b. See Study Questions 13-14, Chapter 9 of K&T. This and the following 3 questions are basic exercises in drawing Lewis structures.

- 11. Consider the molecule SO₃^x, where x is the charge on the molecule. All three bonds are single bonds. Which value of x yields the stable molecule? (Hint: draw Lewis structures to figure this one out)
 - 1) +2 2) +1 3) 0 4) -1 5) -2 (5)
- 12. For the SO₃^x molecule above, how many equal-energy resonance structures can you draw?
 - 1) 1 2) 2 3) 3 4) 4 5) 6 (1)
- 13. The NO bond in HNO is a:
 - single bond
 double bond
 triple bond
 ionic bond
 From OWL units 9-1d and 9-2b. See Study Questions 13-14, Chapter 9 of K&T
- 14. If an element with the valence configuration $4s^23d^7$ loses 2 electron(s), these electron(s) would be removed from the following subshell(s).
 - 1) 4s 2) 3d 3) 4s and 3d 4) 3p 5) 4p (1) From OWL Unit 8-7d
- 15. Which molecule below does not exist?
 - 1) BeF_2 2) CaF_4 3) MgO 4) KCl 5) BCl_3

(2) See Study Question 33, Chapter 9 of K&T – think about ionization required to make ionic compounds (Chapt 9.3)

16. Draw a stable Lewis structure for the symmetrical molecule hydrazine N_2H_4 . In this structure, how many *lone pair electrons* are on *each* N?

1) 1 2) 2 3) 3 4) 4 5) 6

$$H - \ddot{N} - \ddot{N} - H$$

(2) $H H$

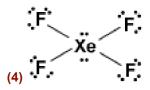
- 17. Draw a stable Lewis structure for the molecule OCS. In this structure (with C at the center), what is the bond order between C and O?
 - 1)1 2) 1.5 3) 2 4) 2.5 5) 3

(3) This is isoelectronic with CO₂

18. Draw the best Lewis structure for ClF_2^+ . How many lone pair electrons are located on Cl?

1) 1 2) 2 3) 3 4) 4 5) 6
(4)
$$F - \ddot{C}I - F$$

19. For the molecule ClF_2^+ , what is the electron group geometry of Cl?


1) linear	2) tetrahedral	3) trigonal planar
4) trigonal bipyramidal	5) octahedral	
(2)		

- 20. In the molecule NO_2^+ , the actual bond order for each NO bond is:
 - 1)1 2) 2 4) 1.5 3) 3
 - 5) 1 for one bond and 2 for the other

OWL 9-4 (2) see above

- 21. Draw the Lewis structure for XeF_4 . The electron group geometry is:
 - 1) square planar 2) square pyramidal 3) trigonal bipyramidal 5) none of the above

OWL 9-xx


	<u>Bor</u>	(gas phase)		
Bond	D	Bond D	Bond	D
H-H	436	C-C 346	N-N	163
C-H	413	C=C 610	N=N	418
N-H	391	O-O 146	C-0	358
O-H	463	O=O 498	C=O	745

22. Consider the reaction: $H_2CCH_2(g) + H_2(g) \rightarrow CH_3CH_3(g)$

What is the energy $(\Delta H^{\circ}, \text{ in kJ mol}^{-1})$ for this reaction?

1) -480 2) -44 3) +44 4) -346 5) +346

5) -1 for one O and 0 for the other O

(Questions 23-24) Consider the following resonance forms for the ion OCN⁻

23. In resonance structure **b**, what is the formal charge on O?

1)
$$-3$$
 2) -2 3) -1 4) 0 5) $+1$ (5)

- 24. Which resonance structure is higher in energy, b or c?
 1) b
 2) c
 3) neither, they have the same energy
 (1)
- 25. The correct designator for this course is:

1) Chem 111 2) Chem 363 3) Econ 3.33 4) Sports 01 (1)

Name: _____

PERIODIC TABLE OF THE ELEMENTS																	
1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3 A	4 A	5A	6A	7A	8A
1 H																	2 He
1.008		-															4.003
3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
6.939	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22.99	24.31		-	r	n	1	1	r	1	1	-	26.98	28.09	30.97	32.07	35.45	39.95
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	26 Fe	27 Co	28 Ni	29 Cu	³⁰ Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.71	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
85.47	87.62	88.91	91.22	92.91	95.94	(99)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55 Cs	56 Ba	57 La	72 Hf	⁷³ Ta	74 W	75 Re	76 Os	77 Ir	⁷⁸ Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	⁸⁶ Rn
132.9	137.3	138.9	178.5	181.0	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
⁸⁷ Fr	⁸⁸ Ra	89 Ac	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une									
(223)	226.0	227.0	(261)	(262)	(263)	(262)	(265)	(266)									