\qquad

Chem 111

9:05a sectionEvening Exam \#3v1

Updated 4/28/04 10:15am

This exam is composed of $\mathbf{2 5}$ questions. Go initially through the exam and answer the questions you can answer quickly. Then go back and try the ones that are more challenging to you and/or that require calculations.

As discussed on the course syllabus, honesty and integrity are absolute essentials for this class. In fairness to others, dishonest behavior will be dealt with to the full extent of University regulations.
$E=h \nu=\frac{h c}{\lambda}$
$h=6.626 \times 10^{-34} \mathrm{~J} s$

$$
c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}
$$

$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$
$\mathrm{Hz}=\mathrm{s}^{-1}$

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	3A	4A	5A	6A	7A	8A
1 H 1.008																	He 4003 4.003
$\begin{aligned} & 3 \\ & \mathbf{L i} \end{aligned}$ 6.939	$\begin{aligned} & 4 \\ & \mathbf{B e} \end{aligned}$ 9.012											5 B 10.81	6 C 12.01 12.01	${ }^{7} \mathbf{N}$ 14.01	8 0 16.00	9 F 19.00	10 Ne 20.18
$\begin{aligned} & 11 \\ & \mathbf{N a} \end{aligned}$ 22.99	12 Mg 24.31											13 AI 26.98	14 Si 28.09	15 P 30.97	$\stackrel{16}{S}$ S 32.07	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	$\begin{gathered} 22 \\ \mathbf{T i} \\ 47.90 \end{gathered}$	$\begin{array}{\|c\|} \hline 23 \\ \mathbf{V} \\ 50.94 \\ \hline \end{array}$	$\begin{aligned} & 24 \\ & \mathrm{Cr} \\ & 52.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & \mathbf{M n} \\ & 54.94 \\ & \hline \end{aligned}$	26 Fe 55.85	27 Co 58.93	28 $\mathbf{N i}$ 58.71	29 Cu 63.55	30 Zn 65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	34 Se 78.96	35 Br 79.90	36 $\mathbf{K r}$ 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & \mathbf{Y 1 . 2 2} \end{aligned}$	41 Nb 92.91	$\begin{array}{\|l\|} \hline 42 \\ \mathbf{M o} \\ \hline 95.94 \\ \hline \end{array}$	43 Tc (99)	$\begin{aligned} & 44 \\ & \mathbf{R u} \\ & 101.1 \end{aligned}$	$\begin{aligned} & 45 \\ & \mathbf{R h} \\ & 102.9 \end{aligned}$	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
$\begin{array}{\|l\|} \hline 55 \\ \text { Cs } \\ 132.9 \\ \hline \end{array}$	56 Ba 137.3	57 La 138.9	72 Hf 178.5	$\begin{aligned} & 73 \\ & \text { Ta } \\ & 181.0 \\ & \hline \end{aligned}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.8 \\ \hline \end{gathered}$	75 Re 186.2	76 Os 190.2	$\begin{aligned} & 77 \\ & \text { Ir } \\ & 192.2 \\ & \hline \end{aligned}$	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 Tl 204.	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra 226.0	89 Ac 227.0	104 Unq (261)	105 Unp (262)		107 Uns (262)		109 Une (266)									

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1. All sodium $\left(\mathrm{Na}^{+}\right)$, potassium $\left(\mathrm{K}^{+}\right)$, and ammonium $\left(\mathrm{NH}_{4}^{+}\right)$salts are SOLUBLE.
2. All nitrate $\left(\mathrm{NO}_{3}^{-}\right)$, acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$, and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts are SOLUBLE.
3. All chloride $\left(\mathrm{Cl}^{-}\right)$, bromide $\left(\mathrm{Br}^{-}\right)$, and iodide $\left(\mathrm{I}^{-}\right)$salts are SOLUBLE -- EXCEPT those also containing: lead, silver, or mercury (I) $\left(\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}\right)$ which are NOT soluble.
4. All sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ salts are SOLUBLE - - EXCEPT those also containing: calcium, silver, mercury (I), strontium, barium, or lead $\left(\mathrm{Ca}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ which are NOT soluble.

Not Soluble Ionic Compounds

5. Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
6. Sulfide (S^{2-}) salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, ammonium, or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble.
7. Carbonate $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}^{3-}\right)$ salts are NOT SOLUBLE -- EXCEPT those also containing: sodium, potassium, or ammonium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}\right)$, which are soluble.
\qquad
8. What is the molecular geometry of $\mathbf{X e F}_{4}$?
1) square pyramidal
2) octahedral
3) trigonal bipyramidal
4) square planar
5) none of the above
(4)

OWL 9-xx
2. XeF_{4} is:
1) polar
2) nonpolar
3) can't tell
(2)

OWL 9-xx
3. What is the molecular geometry of $\mathbf{C l F}_{5}$?
1) square planar
2) octahedral
3) trigonal bipyramidal
4) square pyramidal
5) none of the above
(4)

OWL 9-xx

The answer above is correct, but there was an error on the other version of the exam. Consequently, everyone will get full credit
4. CIF_{5} is:

1) polar
2) nonpolar
3) can't tell
(1) polar

The answer above is correct, but there was an error on the other version of the exam. Consequently, everyone will get full credit
\qquad
5. Using the simplified molecular orbital diagram at right, predict the true bond order in $\mathbf{C N}^{-}$.

1) single
2) double
3) 1.5
4) 2.5
5) triple
(3) triple
OWL 9-xx

6. Using the simplified molecular orbital diagram above, predict the true bond order in O_{2}^{-}.
1) single
2) double
3) triple
4) 1.5
5) 2.5
(4) 1.5
OWL 9-xx
7. Each carbon in $\mathrm{CH}_{2} \mathrm{CH}_{2}$ requires which type of orbital hybridization?
1) sp^{4}
2) sp^{3}
3) sp^{2}
4) sp
5) none of the above
(3) from OWL 10-2b
8. How many atomic orbitals were used to create each of the resulting hybrid orbitals above?
1) 1
2) 2
3) 3
4) 4
5) 5
(3) from OWL 10-2b
\qquad
9. Which of the following molecular orbital representations correctly describes $\mathrm{N}_{2}{ }^{+}$?

(1)

(2)

(3)

(4)

(5)
(4) - nine electrons - from OWL 10-5c
10. For the diatomic molecule XY, the diagram at right depicts:
1) one sigma bonding orbital
2) two sigma bonding orbitals

3) one π bonding orbital
4) two π bonding orbitals
5) one $2 p$ atomic orbital
(3)
11. In the diatomic molecule XY , above, we can deduce that:
1) atom X has a higher electronegativity than atom Y
2) atom Y has a higher electronegativity than atom X
3) atoms X and Y have the same electronegativity
4) we have insufficient data to distinguish the relative electronegativities
(2)
12. In the diatomic molecule $X Y$, above the orbitals) is/are likely derived from:
1) one sp hybrid orbital on X and another sp hybrid orbital on Y
2) one s atomic orbital on X and another s atomic orbital on Y
3) one s atomic orbital on X and a p atomic orbital on Y
4) one p atomic orbital on X and an s atomic orbital on Y
5) one p atomic orbital on X and another p atomic orbital on Y
13. Mixing $\mathbf{P b}\left(\mathbf{N O}_{3}\right)_{2}$ with $\mathbf{C a C l}_{2}$ in water leads to precipitation of:
1) $\mathrm{a}_{\mathrm{NO}}^{3}{ }^{-}$salt
2) aCa^{2+} salt
3) aCl^{-}salt
4) everything precipitates
5) no precipitation
(3) inspired by OWL 5-2d
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{PbCl} 2(\mathrm{~s})+\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{2-}(\mathrm{aq})$
14. Gold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen.

$$
4 \mathrm{Au}(\mathrm{~s})+8 \mathrm{NaCN}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{NaAu}(\mathrm{CN})_{2}(\mathrm{aq})+4 \mathrm{NaOH}(\mathrm{aq})
$$

For this reaction, what is the oxidizing agent?

1) Au
2) NaCN
3) O_{2}
4) $\mathrm{H}_{2} \mathrm{O}$
5) H^{+}
(3) O_{2}

K\&T 5-122
15. Ammonium sulfide, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}$, reacts with $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$ to produce HgS and $\mathrm{NH}_{4} \mathrm{NO}_{3}$ This reaction is best classified as:

1) oxidation-reduction
2) gas evolving
3) acid-base
4) precipitation
5) gas evolving and precipitation
(4) HgS is insoluble (rule 6, above). $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is clearly soluble, not a gas.

K\&T 5-97
16. Consider the reaction:
$\mathrm{FeCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
This reaction is best classified as:

1) oxidation-reduction
2) precipitation
3) acid-base
4) gas-evolving
5) gas evolving and acid-base
(5) CO_{2} is a gas. $2 \mathrm{H}^{+}$from HNO_{3} joins with O^{2-} from $\mathrm{CO}_{3}{ }^{2-}$ (the latter is really the same as H^{+}plus OH^{-})
17. CdSe finds many uses in electronics and the computer industry. What is the oxidation number of Cd in CdSe ?
1) 1
2) 2
3) 3
4) 4
5) 0
(2) +2 Se wants to be -2
18. Alka seltzer is a combination of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, and $\mathrm{NaHCO}_{3}{ }^{-}$. They react in your glass to form $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}, \mathrm{H}_{2} \mathrm{O}$, and CO_{2}

What is the oxidation number of C in $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$?

1) +1
2) +2
3) +3
4) +6
5) -6
(1) $+1 \quad 0=6 x+8(+1)+7(-2)$
18. Alka seltzer is a combination of citric acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$, and $\mathrm{NaHCO}_{3}{ }^{-}$. They react in your glass to form $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}, \mathrm{H}_{2} \mathrm{O}$, and CO_{2}

What is the oxidation number of C in $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{7}^{-}$?

1) +1
2) +2
3) +3
4) +6
5) -6
(1) $+1 \quad-1=6 x+7(+1)+7(-2)$
19. Write the balanced, net ionic equation corresponding to the unbalanced equation:

$$
\mathrm{AlCl}_{3}+\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow \mathrm{AlPO}_{4}+\mathrm{NaCl}
$$

The coefficient in front of $\mathbf{N a}^{+}(\mathrm{aq})$ is:

1) 1
2) 2
3) 3
4) 4
5) $0\left(\mathrm{Na}^{+}\right.$doesn't occur in the net ionic equation)
$\mathrm{Al}^{3+}(\mathrm{aq})+\mathrm{PO}_{4}{ }^{3-}(\mathrm{aq}) \rightarrow \mathrm{AlPO}_{4}(\mathrm{~s})$
(5) Na+ cancels out of the net ionic equation OWL 10-xx
20. Which reaction below is a redox reaction?
1) $\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
2) $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HClO}_{4}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NaClO}_{4}$
3) CdCl_{2} (aq) $+\mathrm{Na}_{2} \mathrm{~S}(\mathrm{aq}) \rightarrow \mathrm{CdS}(\mathrm{s})+2 \mathrm{NaCl}$ (aq)
4) $\mathrm{Si}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{SiCl}_{4}$ (1)
5) None of the above
(4) Look at redox changes

Chapt 5 inspired by book
21. The net ionic equation for the reaction of zinc sulfate and sodium hydroxide is:

1) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
2) $\mathrm{ZnSO}_{4}(\mathrm{aq})+2 \mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$
3) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$
4) Zn^{2+} (aq) $+2 \mathrm{OH}^{-}$(aq) $\rightarrow \mathrm{Zn}(\mathrm{OH})_{2}$ (aq)
5) No net reaction occurs
(3) hydroxide salts are generally insoluble (OWL 5-2c)
22. Dissolving BaO in water leads to:
1) a resulting basic solution
2) a resulting acidic solution
3) no change in pH of the solution
(1)
23. Which of the following is the strongest acid?
1) $\mathrm{H}_{3} \mathrm{PO}_{4}$
2) $\mathrm{H}_{2} \mathrm{CO}_{3}$
3) $\mathrm{CH}_{3} \mathrm{COOH}$
4) HNO_{3}
5) NH_{3}
(4) Nitric acid
24. In benzene, shown at right, there are 3 pi bonding and 3 pi antibonding molecular orbitals. How many carbon 2 p orbitals are used in creating these molecular orbitals?
1) 1
2) 2
3) 3
4) 6
5) 12
(4) six -- six atomic orbitals yield six molecular orbitals
25. The correct designator for this course is:
1) Chem 111
2) Chem 363
3) Econ 3.33
4) Sports 01
