This exam is composed of $\mathbf{5 0}$ questions．Go initially through the exam and answer the questions you can answer quickly．Then go back and try the ones that are more challenging to you and／or that require calculations．．

$$
\begin{array}{llll}
P V=n R T \quad N_{o}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & 1 \mathrm{~mL}=1 \mathrm{~cm}^{3} & h=6.626 \times 10^{-34} \mathrm{~J} \\
E=h v=\frac{h c}{\lambda} \quad \overline{u^{2}}=\frac{3 R T}{M} \quad \overline{K . E}=\frac{1}{2} m \mathrm{mu}^{2} & 1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg} & c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
E_{n}^{H-a t o m}=-\frac{R_{H} h c}{n^{2}} \quad R_{H} h c=1312 \mathrm{~kJ} \mathrm{~mol}_{\text {vap }}\left(\mathrm{H}_{2} \mathrm{O}\right)=40.65 \mathrm{~kJ} \mathrm{~mol}^{-1} & R=0.0820 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta H_{\text {fus }}\left(\mathrm{H}_{2} \mathrm{O}\right)=6.00 \mathrm{~kJ} \mathrm{~mol}^{-1} & R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
& \Delta E=q+w=\Delta H-P \Delta V & J=\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}
\end{array}
$$

PERIODIC TABLE OF THE ELEMENTS

1A	2A	3B	4B	5B	6B	7B	8B	8B	8B	1 B	2B	3A	4A	5A	6A	7 A	8A
$\begin{array}{\|l\|} \hline 1 \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}$																	$\begin{array}{\|l\|} \hline 2 \\ \mathrm{He} \\ 4.003 \\ \hline \end{array}$
$\begin{array}{\|l\|} \hline 3 \\ \mathbf{L i} \\ 6.939 \\ \hline \end{array}$	$\begin{array}{\|l\|} 4 \\ \mathrm{Be} \end{array}$ 9.012											B 10.81	${ }^{6} \mathrm{C}$ 12.01	$\begin{gathered} { }^{7} \mathbf{N} \\ 14.01 \end{gathered}$	8 0 16.00	$\begin{array}{\|c} 9 \\ \mathbf{F} \\ 19.00 \\ \hline \end{array}$	10 Ne 20.18
$\begin{array}{\|l\|} \hline 11 \\ \mathbf{N a} \\ 22.99 \\ \hline \end{array}$	$\begin{aligned} & \hline 12 \\ & \mathbf{M g} \end{aligned}$ 24.31											$\begin{aligned} & 13 \\ & \mathbf{A l}_{26.98} \\ & 22 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & \mathrm{Si} \\ & \text { 28.09 } \end{aligned}$	15 \mathbf{P} 30.97	$\begin{array}{\|c\|} \hline 16 \\ S \end{array}$	$\begin{aligned} & 17 \\ & \mathbf{C l} \\ & 35.45 \end{aligned}$	$\begin{array}{\|l\|} 18 \\ \mathbf{A r} \end{array}$ 39.95
$\begin{array}{\|c} 19 \\ \mathbf{K} \\ 39.10 \end{array}$	20 Ca 40.08	$\stackrel{21}{\mathrm{Sc}}$ 44.96	$\begin{aligned} & \hline 22 \\ & \mathbf{T i} \\ & 47.90 \end{aligned}$	$\begin{gathered} \hline 23 \\ \mathbf{V} \\ 50.94 \\ 5 \end{gathered}$	$\begin{array}{\|l\|} \hline \begin{array}{l} 24 \\ \mathbf{C r} \\ 52.00 \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 25 \\ \mathbf{M n} \end{array}$ 54.94	${ }^{26}$ Fe 5.85	$\begin{aligned} & 27 \\ & \mathbf{C o} \end{aligned}$ 58.93	$\begin{array}{\|l\|} \hline 28 \\ \mathrm{Ni} \end{array}$ 58.71	${ }_{\mathbf{C}}^{\mathbf{C u}}$ 63.55	65.39	31 Ga 69.72	32 Ge 72.61	33 As 74.92	$\begin{aligned} & 34 \\ & \text { Se } \end{aligned}$ 78.96	$\begin{array}{\|l\|} \hline 35 \\ \mathbf{B r} \\ 79.90 \\ \hline \end{array}$	$\begin{aligned} & 36 \\ & \mathbf{K r} \end{aligned}$ 83.80
$\begin{array}{\|l\|} \hline 37 \\ \mathbf{R b} \end{array}$	${ }_{\mathbf{3}}^{\mathbf{S r}}$ 87.62	$\stackrel{39}{\mathbf{Y}}$ 88.91	$\begin{aligned} & \hline 40 \\ & \mathbf{Z n} \end{aligned}$ 91.22	$\begin{aligned} & \hline \mathbf{4}^{\mathbf{N}} \mathrm{b} \end{aligned}$ 92.91	$\begin{array}{\|l\|} \hline 42 \\ \text { Mo } \\ 95.94 \\ \hline \end{array}$	43 Tc （99）	$\begin{array}{\|l\|} \hline \begin{array}{l} 44 \\ \mathbf{R u} \\ \hline 101.1 \\ \hline \end{array} ⿳ ⺈ ⿴ 囗 十 一 ⿱ 䒑 土 \end{array}$	$\begin{array}{\|l\|} \hline \left.\begin{array}{l} 45 \\ \mathbf{R h} \\ 102.9 \\ \hline \end{array} \right\rvert\, \end{array}$	46 $\mathbf{P d}$	$\begin{aligned} & { }^{47} \\ & \hline \mathbf{A g} \end{aligned}$ 107.9	$\stackrel{48}{\mathrm{Cd}}$ 112.4	In 1148	$\stackrel{50}{\mathrm{Sn}}$ 118.7	$\stackrel{51}{\mathbf{S b}}$ 121.8	${ }^{52}$ 127.6	$\begin{gathered} 53 \\ \mathbf{I} \\ 126.9 \end{gathered}$	$\stackrel{54}{\mathrm{Xe}}$ 131.3
55 Cs 132.9	56 Ba 137.3	$\begin{aligned} & 57 \\ & \mathbf{L a} \\ & 138.9 \end{aligned}$	Hf 178.5	$\begin{aligned} & \text { 73 } \\ & \text { Ta } \end{aligned}$ 181.0	$\begin{array}{\|l} \hline 74 \\ \mathbf{W} \end{array}$ 183.8	$\begin{array}{\|l\|} \hline 75 \\ \mathbf{R e} \end{array}$ 186.2	${ }^{76}$ 190.2	77 Ir 192.2	$\begin{array}{\|l} 78 \\ \hline \mathbf{P A} \end{array}$	$\begin{aligned} & 79 \\ & \mathbf{A u} \\ & 197.0 \end{aligned}$	${ }^{80}$ 200.6	${ }^{81}$ Tl 204.4	$\begin{aligned} & 82 \\ & \mathbf{P b} \end{aligned}$ 207.2	$\stackrel{83}{8 i}$ 209.0	84 Po （209）	85 At （210）	
$\begin{aligned} & 87 \\ & \mathbf{F r} \end{aligned}$	88 Ra 226.0	${ }^{89}$ Ac 227.0	104 Unq （261）	105 Unp （262）	106 Unh （263）	107 Uns （262）	108 Uno （265）	109 Une （260）									

Solubility Rules for some ionic compounds in water

Soluble Ionic Compounds

1．All sodium $\left(\mathrm{Na}^{+}\right)$，potassium $\left(\mathrm{K}^{+}\right)$，and ammonium $\left(\mathrm{NH}_{4}^{+}\right)$salts are SOLUBLE．
2．All nitrate $\left(\mathrm{NO}_{3}^{-}\right)$，acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$，chlorate $\left(\mathrm{ClO}_{3}^{-}\right)$，and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts are SOLUBLE．
3．All chloride $\left(\mathrm{Cl}^{-}\right)$，bromide $\left(\mathrm{Br}^{-}\right)$，and iodide $\left(\mathrm{I}^{-}\right)$salts are SOLUBLE－－EXCEPT those also containing： lead，silver，or mercury（I）$\left(\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}\right)$ which are NOT soluble．
4．All sulfate（ $\mathrm{SO}_{4}{ }^{2-}$ ）salts are SOLUBLE－－EXCEPT those also containing：calcium，silver，mercury（I）， strontium，barium，or lead $\left(\mathrm{Ca}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}\right)$ which are NOT soluble．

Not Soluble Ionic Compounds

5．Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds are NOT SOLUBLE－－EXCEPT those also containing： sodium，potassium，or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble．
6．Sulfide（ S^{2-} ）salts are NOT SOLUBLE－－EXCEPT those also containing：sodium，potassium， ammonium，or barium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}^{+}, \mathrm{Ba}^{2+}\right)$ which are soluble．
7．Carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}^{3-}\right)$ salts are NOT SOLUBLE－－EXCEPT those also containing： sodium，potassium，or ammonium $\left(\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}{ }^{+}\right)$，which are soluble．
\qquad

1. Surgeons use biodegradable polymers for sutures. One commonly used polymer, poly(lactic acid), degrades to the small molecule lactic acid, shown at right. 0.5 moles of lactic acid corresponds to what mass of lactic acid?

1) 23.5 g
2) 90.1 g
3) 111 g
4) 38.0 g
5) 45.0 g
(5) $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}{ }^{M}=[3(12.01)+6(1.008)+3(16.00)] \mathrm{g} \mathrm{mol}^{-1}=90.08 \mathrm{~g} \mathrm{~mol}^{-1}$
(Chapt 3)

$$
m=n M=(0.5 \mathrm{~mol})\left(90.08 \mathrm{~g} \mathrm{~mol}^{-1}\right)=45.0 \mathrm{~g}
$$

2. Direct reaction of iodine $\left(\mathrm{I}_{2}\right)$ and chlorine $\left(\mathrm{Cl}_{2}\right)$ produces an iodine chloride, $\mathrm{I}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$, a bright yellow solid. If you completely use up 0.339 g of iodine and produced 0.623 g of $\mathrm{I}_{\mathrm{x}} \mathrm{Cl}_{\mathrm{y}}$, what is the empirical formula of the compound?
1) $\mathrm{I}_{3} \mathrm{Cl}_{2}$
2) $\mathrm{I}_{3} \mathrm{Cl}$
3) $\mathrm{I}_{2} \mathrm{Cl}_{3}$
4) ICl_{3}
5) $\mathrm{I}_{3} \mathrm{Cl}_{3}$
(4) ICl_{3}

$$
\begin{array}{ll}
\text { Mass } I_{2} \text { incorporated }=0.339 \mathrm{~g} & \text { Mass } C l_{2} \text { incorporated }=0.623 \mathrm{~g}-0.339 \mathrm{~g}=0.284 \mathrm{~g} \\
\text { moles I incorporated }=\frac{0.339 \mathrm{~g}}{126.91 \mathrm{~g} \mathrm{~mol}^{-1}}=0.00267 \mathrm{~mol} & \text { moles Cl incorporated }=\frac{0.284 \mathrm{~g}}{35.45 \mathrm{~g} \mathrm{~mol}^{-1}}=0.00801 \mathrm{~mol} \\
\frac{y}{x}=\frac{0.00801 \mathrm{~mol}}{0.00267 \mathrm{~mol}}=3.00 &
\end{array}
$$

3. What is the formula of the ionic compound expected to form between the ions $\mathbf{F e}{ }^{\mathbf{4 +}}$ and $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$?
1) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
2) $\mathrm{Fe}_{2} \mathrm{SO}_{4}$
3) $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$
4) FeSO_{4}
5) $\mathrm{Fe}_{2} \mathrm{SO}_{2}$
(3) $\mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2}$
(OWL, Chapt 3)
4. A sample of aspirin, $\mathbf{C}_{\mathbf{9}} \mathbf{H}_{\mathbf{8}} \mathbf{O}_{\mathbf{4}}$, contains 0.104 mol of the compound. What is the mass of this sample, in grams?
1) 20.1 g
2) 12.5 g
3) 37.3 g
4) 0.0730 g
5) 18.7 g

First we need the molar mass of $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$:
$9($ molar mass of C$)+8($ molar mass of H$)+4($ molar mass of O$)=$ $9\left(12.011 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+8\left(1.0079 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)+4\left(15.9994 \frac{\mathrm{~g}}{\mathrm{~mol}}\right)=180.2 \frac{\mathrm{~g}}{\mathrm{~mol}}$

Use that to calculate the mass:
(5) $(0.104 \mathrm{~mol})\left(\frac{108.10 \mathrm{~g}}{\mathrm{~mol}}\right)=18.74 \mathrm{~g}$
(OWL, Chapt 3)
5. What is the wavelength of light with frequency $7.15 \times 10^{14} \mathrm{~Hz}$?

1) 209 nm
2) 420 nm
3) 501 nm
4) 162 nm
5) 250 nm
(2) $\lambda=\left(\frac{2.9998 \times 10^{8} m}{s}\right)\left(\frac{1}{7.15 \times 10^{14} H z}\right)\left(\frac{H z}{1} \frac{s}{1}\right)=4.20 \times 10^{-7} \mathrm{~m}$
(2)

$$
=4.20 \times 10^{-7} m\left(\frac{10^{9} \mathrm{~nm}}{\mathrm{~m}}\right)=420 \mathrm{~nm}
$$

(OWL, Chapt 7)
6. What is the wavelength of the photon emitted from or absorbed by a hydrogen atom when the electron goes from $n=2$ to $n=7$?

> 1) $0.023 \mathrm{~nm} \quad$ 2) $397 \mathrm{~nm} \quad$ 3) 434 nm $E=E_{f}-E_{i}=\left(-\frac{R h c}{n_{f}^{2}}\right)-\left(-\frac{R h c}{n_{i}^{2}}\right)=-R h c\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)=-1312 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\frac{1}{7^{2}}-\frac{1}{2^{2}}\right)=-301 \mathrm{~kJ} \mathrm{~mol}^{-1}$ $\lambda=\frac{h c}{E}=\frac{h c}{-R h c\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)}=\frac{1}{-R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)}=\frac{1}{-\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)\left(\frac{1}{7^{2}}-\frac{1}{2^{2}}\right)}$ $=\frac{1}{-\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)\left(\frac{1}{49}-\frac{1}{4}\right)}=\frac{1}{-\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)(-0.2296)}=3.97 \times 10^{-7} \mathrm{~m}=397 \mathrm{~nm}$
(2) What happened to the negative sign? A negative wavelength makes no sense. This reflects that E is negative. That is, that energy is emitted in this transition. Had we done the longer calculation (solved for E first), we would have dropped the negative sign at that point.
(Chapt 7)
7. In the above question, does the energy of the H atom increase or decrease?

1) increase
2) decrease
3) doesn't change
4) can't tell
(1) If you note that higher " n " values are at higher energy, then this is clearly a transition from lower to higher energy - energy must be taken up (absorbed as a photon from the environment). The energy of the H atom must therefore increase
(Chapt 7, with a Chapter 6 twist)
8. A local AM radio station broadcasts at an energy of $\mathbf{8 . 8 8} \times 10^{-7} \mathbf{k J} / \mathbf{m o l}$. Calculate the frequency at which it is broadcasting.
1) 1.39 MHz
2) 0.835 MHz
3) 1.39 KHz
4) 2.23 Mhz
5) Cant' tell
(4) $v=\frac{E}{h}=\frac{8.88 \times 10^{-7} \mathrm{~kJ} \mathrm{~mol}^{-1}}{6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}} \frac{10^{3} \mathrm{~J}}{\mathrm{~kJ}} \frac{1}{6.02 \times 10^{23} \mathrm{~mol}^{-1}}=2.23 \times 10^{6} \mathrm{~s}^{-1}=2.23 \mathrm{MHz}$
(OWL, Unit 7-2c and 7-3c)
9. The magnetic quantum number m_{l} specifies:
1) subshell orbital shape
2) subshell orbital orientation
3) transition probability
4) subshell orbital karma
5) energy and distance from nucleus
(2)
(OWL, Unit 7-7b)
10. The name of the element represented by the symbol N is:
1) carbon
2) nitrogen
3) oxygen
4) neon
5) aluminum
(2) A freebie!
11. Which list below is in order of increasing ionization energy (low to high)?
1) $\mathrm{Cl}<\mathrm{S}<\mathrm{P}<\mathrm{Si}$
2) $\mathrm{Ne}<\mathrm{F}<\mathrm{O}<\mathrm{N}$
3) I $<\mathrm{Br}<\mathrm{Cl}<\mathrm{F}$
4) $\mathrm{K}<\mathrm{Rb}<\mathrm{Na}<\mathrm{Li}$
5) none of the above
(3)
(Chapt 8)
12. Which of the following correctly compares atomic sizes (small to large)?
1) $\mathrm{Ne}<\mathrm{Li}<\mathrm{B}<\mathrm{C}<\mathrm{N}$
2) $\mathrm{Ne}<\mathrm{N}<\mathrm{C}<\mathrm{O}<\mathrm{Be}$
3) $\mathrm{Li}<$ B $<\mathrm{C}<\mathrm{N}<\mathrm{Ne}$
4) $\mathrm{Si}<\mathrm{P}<\mathrm{S}<\mathrm{Cl}<\mathrm{Ar}$
5) none of the above
(OWL, Unit 8-8c)
13. Which of the following correctly compares ionic/atomic sizes (small to large)?
1) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Ar}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
2) $\mathrm{Ne}<\mathrm{O}<\mathrm{C}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}$
3) $\mathrm{C}<\mathrm{O}<\mathrm{Ne}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$
4) $\mathrm{Ne}<\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{O}<\mathrm{C}$
5) none of the above
(OWL, Unit 8-9c)
14. The correct spectroscopic notation for phosphorous ion $\left(\mathrm{P}^{2-}\right)$ is:
1) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
2) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
3) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}$
4) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$
5) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
(4)
(OWL, Unit 8-7c)
15. What is the maximum number of electrons that can be accomodated by the orbitals that can be identified by the set of quantum numbers $n=+2 \quad l=1$?
1) 3
2) 6
3) 4
4) 10
5) 12
(2) for $I=1$, one can have $m /=-1,0,+1$ (3 orbitals, with 6 electrons)
(Chapt 7)
\qquad
16. Draw the Lewis structure for $\mathbf{N O}_{2}{ }^{+}$

Your resulting molecule has a total of:

1) Two single bonds
2) Two double bonds
3) One single and one double bond
4) One double and one triple bond
5) Two triple bonds
(2) From OWL units 9-1d and 9-2b. See Study Questions 13-14, Chapter 9 of K\&T

	Bond Dissociation Energies $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$				(gas phase)
Bond	D	Bond	D	Bond	D
H-H	436	C-C	346	N-N	163
C-H	413	C=C	610	$\mathrm{~N}=\mathrm{N}$	418
N-H	391	O-O	146	C-O	358
O-H	463	$\mathrm{O}=\mathrm{O}$	498	$\mathrm{C}=\mathrm{O}$	745

17. Consider the reaction: $\mathrm{HNNH}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

What is the energy $\left(\Delta \mathrm{H}^{\circ}\right.$, in $\left.\mathrm{kJ} \mathrm{mol}^{-1}\right)$ for this reaction?

1) +183
2) -183
3) +274
4) +463
5) -274
6) -1 for one O and 0 for the other O

(5)

$$
\begin{align*}
& \Delta H^{\circ}=(\text { Bonds Broken })-(\text { Bonds Formed }) \\
& \Delta H^{\circ}=(D N=N+2 D H-H)-(4 D N-H)=[418+2(436)]-4(391)=-274 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{Chapt9}
\end{align*}
$$

(Questions 18-19) Consider the following resonance forms for the azide ion $\mathrm{N}_{3}{ }^{-}$

a

b

c

d
18. In resonance structure \mathbf{a}, what is the formal charge on the central N ?

1) +3
2) -2
3) -1
4) 0

c
5) +1

(1)
(Chapt 9)
19. Which resonance structure is lowest in energy?
1) a
2) b
3) c
4) d
5) all same
(3)
(Chapt 9)
20. Draw the Lewis structure for $\mathrm{ClF}_{4}{ }^{-}$. The molecular geometry is:
1) square planar
2) T-shaped
3) trigonal bipyramidal
4) octahedral
5) none of the above
(1)

(OWL, Chapt 9)
21. The molecule $\mathbf{C I F}_{4}{ }^{-}$is:
1) polar
2) nonpolar
3) can't tell
(2) nonpolar - the individual dipoles do cancel out.
(OWL, Unit 9b)
22. In $\mathbf{C l F}_{4}{ }^{-}$, what is the hybridization on $\mathbf{C l}$?
1) $\mathrm{sp}^{3} d^{3}$
2) $s p^{3} d^{2}$
3) $s p^{3} d$
4) sp^{3}
5) sp^{2}
(2) six orbitals required
(OWL, Chapt 10)
23. Which of the following molecular orbital representations correctly describes $\mathrm{F}_{2}{ }^{-}$?

(1)

(2)

(3)

(4)

(5)

$$
\text { (3) - } 15 \text { electrons - from OWL 10-5c }
$$

24. From molecular orbital theory, the bond order in $\mathrm{F}_{2}{ }^{-}$is:
1) single
2) double
3) 0.5
4) 1.5
5) 2.5
\qquad
25. The molecule $\mathrm{F}_{2}{ }^{-}$is predicted to be:
1) paramagnetic
2) diamagnetic
3) can't tell
26. Consider the molecular orbital diagram shown at right:

This energy diagram best describes:

1) O_{2}
2) NO^{-}
3) NO^{+}
4) N_{2}
(3) count electrons!! - from OWL 10-5c w/ a minor twist

Note that O is more electronegative, and therefore lower in energy, than N (O is on the right). (OWL, Chapt 10)

$\mathrm{X} \quad \mathrm{Y}$
27. Trendy anti-wrinkle creams advertise the presence of "alpha hydrox" as a key component. A structure of an alpha hydroxy acid is shown at right. In this molecule, what is the hybridization at the alpha hydroxyl oxygen? Hint: the oxygen
 atom is "happy."

1) sp
2) sp^{2}
3) sp^{3}
4) $\mathrm{sp}^{3} \mathrm{~d}$
5) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(3) To complete the octet on O and make it "happy," we need to add two pairs of electrons. This places 4 "electron groupings" around \mathbf{O} and therefore we need hybridization that gives us 4 hybrid orbitals.
(Chapter 10)
28. Write the balanced, net ionic equation corresponding to the reaction of magnesium bromide and barium hydroxide. In your net ionic equation, the coefficient in front of $\mathbf{O H}^{-}(\mathrm{aq})$ is:
1) 1
2) 2
3) 3
4) 4
5) $0\left(\mathrm{OH}^{-}\right.$doesn't occur in the net ionic equation)
$(2) \mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Mg}(\mathrm{OH}) 2(\mathrm{~s})$
(OWL, Unit 5-2c)
29. Write the balanced, net ionic equation corresponding to the reaction of potassium carbonate and iron(II) iodide. In your net ionic equation, the coefficient in front of $\mathbf{C O}_{3}{ }^{\mathbf{2 -}}(\mathrm{aq})$ is:
1) 1
2) 2
3) 3
4) 4
5) $0\left(\mathrm{CO}_{3}{ }^{2-}\right.$ doesn't occur in the net ionic equation)
$(1) \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{FeCO}_{3}(\mathrm{~s})$
(OWL, Unit 5-2d)
30. Mixing $\mathrm{Na}_{\mathbf{2}} \mathbf{C O}_{\mathbf{3}}$ with $\mathbf{K C l}$ in water leads to precipitation of:
1) $\mathrm{CO}_{3}{ }^{2-}$ salt
2) a Na^{+}salt
3) aCl^{-}salt
4) everything precipitates
5) no precipitation
(OWL, inspired by Unit 5-2d)
31. Gold can be dissolved from gold-bearing rock by treating the rock with sodium cyanide in the presence of oxygen.

$$
4 \mathrm{Au}(\mathrm{~s})+8 \mathrm{NaCN}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{NaAu}(\mathrm{CN})_{2}(\mathrm{aq})+4 \mathrm{NaOH}(\mathrm{aq})
$$

For this reaction, what is the reducing agent?

1) Au
2) NaCN
3) O_{2}
4) $\mathrm{H}_{2} \mathrm{O}$
5) H^{+}
(1) Au
(Textbook problem 5-122)
32. What is the oxidation number of tin in $\mathrm{SnO}_{3}{ }^{2-}$?
1) +2
2) +4
3) +6
4) -6
5) 0
(2) +4
(OWL Unit 5-8b)
33. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$, is a reasonably strong:
1) acid
2) base
3) reducing agent
3) oxidizing agent
(4) O has an oxidation number of -1 , it wants to be -2
(OWL Unit 5-8b)
34. In general, strong acids are:
1) good oxidants
2) good reductants
3) insoluble
3) weak electrolytes
4) strong electrolytes
(5) strong electrolyte $==$ well-dissociated
(OWL Unit 5-5b)
35. In an endothermic process:
1) work is performed on the surroundings
2) heat is transferred to the surroundings
3) work is performed on the system
4) heat is transferred to the system
(Chapter 6)
36. Ability to do work is best described as:
1) $\Delta \mathrm{H}$
2) q
3) $\Delta E-q$
4) ΔE
5) ΔG
(3) Ability to do work is w. $\Delta E=q+w$
(Chapter 6)
37. A negative value of $\Delta \mathrm{E}$ means that:
1) heat is tranferred to the surroundings
2) heat is transfered to the system
3) energy in the form of heat and/or work is transferred to the surroundings
4) energy in the form of heat and/or work is transferred to the system
(Chapter 6)
38. An automobile engine generates 2755 Joules of heat that must be carried away by the cooling system. The internal energy changes by $\mathbf{- 3 5 2 8}$ Joules in this process.
How much work to push the pistons is available in this process ?
1) 4918 J
2) 5833 J
3) 683 J
4) 6283 J
5) 773 J

$$
\Delta E=q+w \quad w=\Delta E-q=(-3528 J)-(-2755 J)=-773 J
$$

(5) w is negative. The system does work on the surroundings.
\qquad
39. An instant ice pack for first-aid treatment uses the dissolution of an ionic salt in water to provide cold therapy. Given the standard molar enthalpies of formation shown at right, determine $\Delta \mathrm{H}$ for the reaction:

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \\
& \begin{array}{ll}
\text { 1) }-28.05 \mathrm{~kJ} \mathrm{~mol}^{-1} & \text { 2) }+28.05 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\text { 3) }-14.72 \mathrm{~kJ} \mathrm{~mol}^{-1} & \text { 4) }+14.72 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{array}
\end{aligned}
$$

Subst	$\Delta \mathrm{H}_{f}{ }^{\circ}(\mathrm{kJ} / \mathrm{mol})$
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$	-132.51
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})$	-205.0
$\mathrm{Cl}^{-}(\mathrm{aq})$	-167.2
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$	-365.56
$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	-314.43

5) not enough information to determine
(4) $[(-132.51)+(-167.2)]-[(-314.43)]=14.72 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(Chapt 6)
40. Given the information on page 1 , what is the heat required to vaporize water at 298 K ?
1) $-40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $40.65 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) $-44.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) not enough information to determine
(5) From what you are given, you cannot compute this. The value for Δ Hvap given on page 1 is at the boiling point, 373 K , not 298 K . To complete this question, you'd need the heat capacities for liquid water and for water vapor.
(Chapt 6)
41. A 45.5 g sample of copper at $99.8^{\circ} \mathrm{C}$ is dropped into a beaker containing 152 g of water at $18.5^{\circ} \mathrm{C}$. When thermal equilibrium is reached, what is the final temperature of the copper? The specific heat capacities of water and copper are 4.184 and 0.385 J $\mathrm{g}^{-1} \mathrm{~K}^{-1}$, respectively.
1) $25.3^{\circ} \mathrm{C}$
2) $12.5^{\circ} \mathrm{C}$
3) $37.0^{\circ} \mathrm{C}$
4) $90.1^{\circ} \mathrm{C}$
5) $20.7^{\circ} \mathrm{C}$

$$
\begin{aligned}
& q_{\text {metal }}+q_{\text {water }}=0 \\
& \left(0.385 \mathrm{Jg}^{-1} K^{-1}\right)(45.5 g)(x-99.8) K+\left(4.184 \mathrm{Jg}^{-1} K^{-1}\right)(152 g)(x-18.5) K=0 \\
& (x-99.8) K=\frac{-\left(4.184 J^{-1} K^{-1}\right)}{\left(0.385 J^{-1} K^{-1}\right)} \frac{(152 g)}{(45.5 g)}(x-18.5) K=-36.30(x-18.5) K \\
& x-99.8=-36.30 x-(18.5)(-36.30) \\
& x+36.30 x=99.8+671.6=771.4 \\
& x=20.7
\end{aligned}
$$

(5) See also example 6.2
\qquad
42. Given the following information:

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=9.2 \mathrm{~kJ} \\
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-164.2 \mathrm{~kJ}
\end{array}
$$

what is the standard enthalpy change for the reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=?
$$

1) $-155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
2) $-146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
3) $155 \mathrm{~kJ} \mathrm{~mol}^{-1}$
4) $146 \mathrm{~kJ} \mathrm{~mol}^{-1}$
5) not enough information to determine

$$
\begin{array}{ll}
2 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=2(9.2) \mathrm{kJ} \\
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-164.2 \mathrm{~kJ}
\end{array}
$$

(2) $\quad \Delta H^{\circ}=(18.4-164.2) \mathrm{kJ} \mathrm{mol}^{-1}=-145.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(Owl, Unit 6-6c)
43. The average molecular speed in a sample of N_{2} gas is $408 \mathrm{~m} / \mathrm{s}$ at 303 K .

The average molecular speed in a sample of CO gas at the same temperature is:

1) $408 \mathrm{~m} \mathrm{~s}^{-1}$
2) $381 \mathrm{~m} \mathrm{~s}^{-1}$
3) $478 \mathrm{~m} \mathrm{~s}^{-1}$
4) $326 \mathrm{~m} \mathrm{~s}^{-1}$
5) $318 \mathrm{~m} \mathrm{~s}^{-1}$
(1) Same temperature means same kinetic energy, so
(OWL, Unit 12-6d)
Note: as corrected at the exam, in the question, replace "average molecular speed" by "root mean square velocity"

$$
\begin{aligned}
& K E=\frac{1}{2} m_{N_{2}} u_{N_{2}}^{2}=\frac{1}{2} m_{C O} u_{C O}^{2} \\
& u_{C O}^{2}=\frac{m_{N_{2}}}{m_{C O}} u_{N_{2}}^{2}=\frac{\left(2 \times 14.01 \mathrm{~g} \mathrm{~mol}^{-1}\right)}{\left(12.01 \mathrm{~g} \mathrm{~mol}^{-1}\right)+\left(16.00 \mathrm{~g} \mathrm{~mol}^{-1}\right)}\left(408 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2} \\
& =166523\left(\mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=\left(408 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}
\end{aligned}
$$

44. A 1.28 mol sample of Ar gas is confined in a 31.5 liter container at $26.5^{\circ} \mathrm{C}$. If
1.28 mol of F_{2} gas is added while decreasing the temperature by half, the average kinetic energy per molecule will:
1) decrease
2) remain the same
3) increase
4) not enough information
5) I don't have a clue
(1) Temperature determines average kinetic energy
\qquad
45. A 1.96 mol sample of CO_{2} gas is confined in a 49.1 liter container at $32.3^{\circ} \mathrm{C}$. If the temperature of the gas sample is decreased to $25.0^{\circ} \mathrm{C}$, holding the volume constant, the pressure will decrease because:
1) With lower average speeds, the molecules hit the walls of the container less often.
2) As the average speed decreases, each molecule hits the wall with less force.
3) With higher average speeds, on average the molecules hit the walls of the container with more force.
4) Both reasons (1) and (2) above
5) None of the above
(4)
(Chapter 12)
46. In our bodies, sugar is broken down with oxygen to produce water and carbon dioxide. How many moles of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ are required to react completely with 33.6 L of oxygen gas $\left(\mathrm{O}_{2}\right)$ according to the following reaction at $0{ }^{\circ} \mathrm{C}$ and 1 atm pressure? Note that the reaction may need balancing.

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

1) 6.0 mol
2) 0.250 mol
3) 0.319 mol
4) 0.637 mol
5) 7.13 mol
(2) First, balance the reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

6 mol of oxygen reacts with 1 mol of glucose, so first find the the number of moles of O_{2} gas: $n=\frac{P V}{R T}=\frac{(1 \mathrm{~atm})(33.6 \mathrm{~L})}{\left(0.0820 \mathrm{~atm} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)(273 \mathrm{~K})}=1.50 \mathrm{~mol}$
Therefore, we need $\left(\frac{1}{6}\right) 1.50 \mathrm{~mol}=0.250 \mathrm{~mol}$
(OWL, Unit 12-3b)
47. What is the total volume of gaseous products formed when 160 L of bromine trifluoride $\left(\mathrm{BrF}_{3}\right)$ react completely to form Br_{2} and F_{2} ? (All gases are at the same temperature and pressure, before and after.)

1) 85 L
2) 190 L
3) 380 L
4) 320 L
5) 160 L
(4) First, write a balanced equation:

$$
2 \mathrm{BrF}_{3}->\mathrm{Br}_{2}+3 \mathrm{~F}_{2}
$$

Look at mole ratios. 4 moles of gases are derived from 2 moles of reactants. Therefore, the volume should double.
(OWL, Unit 12-3b)
48. The temperature of the atmosphere on Mars can be as high as $28^{\circ} \mathrm{C}$ at the equator at noon, and the atmospheric pressure is about 7.0 mm of Hg . If a spacecraft could collect $6.20 \mathrm{~m}^{3}$ of this atmosphere, compress it to a small volume, and send it back to earth, about how many moles would the sample contain?

1) 0.120 mmol
2) 0.395 mmol
3) 3.95 mol
4) 2.31 mol
5) 1.2 mol $n=\frac{P V}{R T}=\frac{(7.0 \mathrm{~mm})\left(6.2 \mathrm{~m}^{3}\right)}{\left(0.0820 \mathrm{~atm} L K^{-1} \mathrm{~mol}^{-1}\right)(28+273) K}\left(\frac{\mathrm{~atm}}{760 \mathrm{~mm}}\right)\left(\frac{100 \mathrm{~cm}}{\mathrm{~m}}\right)^{3}\left(\frac{L}{1000 \mathrm{~cm}^{3}}\right)=2.31 \mathrm{~mol}$ (4)
(Chapter 12)
49. What is the average kinetic energy of an O_{2} molecule confined in 2.5 L at 1.0 atm and $25^{\circ} \mathrm{C}$?
1) $5.71 \times 10^{3} \mathrm{~J}$
2) $9.48 \times 10^{3} \mathrm{~J}$
3) $5.71 \times 10^{-21} \mathrm{~J}$
4) $3.21 \times 10^{-21} \mathrm{~J} \quad$ 5) $6.17 \times 10^{-21} \mathrm{~J}$
(5)
$\overline{K . E}=\frac{1}{2} m \overline{u^{2}}$ (per molecule) $\quad \overline{u^{2}}=\frac{3 R T}{M}$
$\overline{K . E .}=\frac{1}{2} m \frac{3 R T}{M}\left(\frac{M N_{o}^{-1}}{m}\right)=\frac{3}{2} \frac{R T}{N_{o}}=\frac{3}{2} \frac{\left(8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)(25+273) \mathrm{K}}{\left(6.022 \times 10^{23} \mathrm{~mol}^{-1}\right)}=6.17 \times 10^{-21} \mathrm{~J}$
50. The correct designator for this course is:
1) Chem 262
2) Chem 111
3) Econ 3.33
4) Sports 01
5) Bio 233
(2)
