PRS Questions: February 6, 2006

Unit conversion and working with equations

Unit analysis

- Given the equation above, what are the units of x ?

$$
x=\frac{(3.65 \mathrm{~g} / \mathrm{L})}{(4.3 \mathrm{~mol} / \mathrm{L})}
$$

-1) g

- 2) L
- 3) $\mathrm{mol} / \mathrm{g}$
- 4) $\mathrm{mol} / \mathrm{L}$
- 5) $\mathrm{g} / \mathrm{mol}$

Unit analysis

- Given the equation above, what are the units of x ?

$$
x=\frac{(3.65 \mathrm{~g} / \mathrm{L})}{(4.3 \mathrm{~mol} / \mathrm{L})}
$$

- 1) g
- 2) L
- 3) $\mathrm{mol} / \mathrm{g}$
- 4) $\mathrm{mol} / \mathrm{L}$
- 5$) \mathrm{g} / \mathrm{mol}$

Unit analysis

- Let's start using an easier book keeping nomenclature.

$$
x=\frac{(3.65 \mathrm{~g} / \mathrm{L})}{(4.3 \mathrm{~mol} / \mathrm{L})}
$$

$$
x=\frac{\left(3.65 \mathrm{~g} \mathrm{~L}^{-1}\right)}{\left(4.3 \mathrm{~mol} \mathrm{~L}^{-1}\right)}
$$

Unit analysis

- Given the equation at right, what are the units of x ?
-1) g
- 2) L
- 3) $\mathrm{mol} \mathrm{g}^{-1}$
$x\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)=\left(4.3 \mathrm{~g} \mathrm{~L}^{-1}\right)$
- 4) $\mathrm{mol} \mathrm{L}^{-1}$
-5) $\mathrm{g} \mathrm{mol}^{-1}$

Unit analysis

- Given the equation at right, what are the units of x ?
- 1) g
- 2) L

$$
\begin{aligned}
& x\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)=\left(4.3 \mathrm{~g} \mathrm{~L}^{-1}\right) \\
& \frac{x\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)}{\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)}=\frac{\left(4.3 \mathrm{~g} \mathrm{~L}^{-1}\right)}{\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)}
\end{aligned}
$$

- 3) $\mathrm{mol} / \mathrm{g}$
- 4) $\mathrm{mol} / \mathrm{L}$
- $5 \mathrm{~g} / \mathrm{mol}$

$$
x=\frac{\left(4.3 \mathrm{~g} \mathrm{~L}^{-1}\right)}{\left(3.65 \mathrm{~mol} \mathrm{~L}^{-1}\right)}
$$

Unit conversion

$$
x=\left(5.0 \mathrm{~mol} \mathrm{~mL}^{-1}\right)
$$

- Given the equation above, what is the value of x in units of molarity $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$?
- 1) $5.0 \mathrm{~mol} \mathrm{~L}^{-1}$
- 2) $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
- 3) $5.0 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
- 4) $5.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
- 5) $5.0 \times 10^{6} \mathrm{~mol} \mathrm{~L}^{-1}$

Unit conversion

$$
x=\left(5.0 \mathrm{~mol} \mathrm{~mL}^{-1}\right)
$$

- Given the equation above, what is the value of x in units of molarity $\left(\mathrm{mol} \mathrm{L}^{-1}\right)$?
- 1) $5.0 \mathrm{~mol} \mathrm{~L}^{-1}$
- 2) $5.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
- 3) $5.0 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$

$$
x=\left(5.0 \mathrm{~mol} \mathrm{~mL}^{-1}\right)\left(10^{3} \mathrm{~mL} \mathrm{~L}^{-1}\right)
$$

- 4) $5.0 \times 10^{-6} \mathrm{~mol} \mathrm{~L}^{-1}$
-5) $5.0 \times 10^{6} \mathrm{~mol} \mathrm{~L}^{-1}$
$1 \mathrm{~mL}=10^{-3} \mathrm{~L}$
$1=\frac{(1 \mathrm{~mL})}{\left(10^{-3} \mathrm{~L}\right)}=10^{3} \mathrm{~mL} \mathrm{~L}^{-1}$ or $1=\frac{\left(10^{-3} \mathrm{~L}\right)}{(1 \mathrm{~mL})}=10^{-3} \mathrm{~L} \mathrm{~mL}^{-1}$

February 6, 2006

Unit analysis

$$
x\left(25.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)=\left(5.0 \mathrm{mg} \mathrm{~L}^{-1}\right)
$$

- Given the equation above, what is the value of x in units of $\mathrm{g} \mathrm{mol}^{-1}$?
- 1) $2.0 \mathrm{~g} \mathrm{~mol}^{-1}$
- 2) $2.0 \times 10^{2} \mathrm{~g} \mathrm{~mol}^{-1}$
- 3) $2.0 \times 10^{-3} \mathrm{~g} \mathrm{~mol}^{-1}$
- 4) $5.0 \mathrm{~g} \mathrm{~mol}^{-1}$
- 5) $5.0 \times 10^{-3} \mathrm{~g} \mathrm{~mol}^{-1}$

Unit analysis

$$
x\left(25.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)=\left(5.0 \mathrm{mg} \mathrm{~L}^{-1}\right)
$$

- Given the equation above, what is the value of x in units of $\mathrm{g} \mathrm{mol}^{-1}$?
- 1) $2.0 \mathrm{~g} \mathrm{~mol}^{-1}$
- 2) $2.0 \times 10^{2} \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& x=\frac{\left(5.0 \mathrm{mg} \mathrm{~L}^{-1}\right)}{\left(25.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)} \\
& x=\frac{\left(5.0 \mathrm{mg} \mathrm{~L}^{-1}\right)}{\left(25.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}\right)}\left(\frac{\mu \mathrm{mol}}{10^{-6} \mathrm{~mol}}\right)\left(\frac{10^{-3} \mathrm{~g}}{\mathrm{mg}}\right)
\end{aligned}
$$

- 3) $2.0 \times 10^{-3} \mathrm{~g} \mathrm{~mol}^{-1}$
- 4) $5.0 \mathrm{~g} \mathrm{~mol}^{-1}$
- 5) $5.0 \times 10^{-3} \mathrm{~g} \mathrm{~mol}^{-1}$

Remember:

$$
\begin{aligned}
& 1 \mu \mathrm{~mol}=10^{-6} \mathrm{~mol} \\
& 1 \mathrm{mg}=10^{-3} \mathrm{~g}
\end{aligned}
$$

$$
\begin{aligned}
& x=0.2 \times 10^{3} \mathrm{~g} \mathrm{~mol}^{-1} \\
& x=2.0 \times 10^{2} \mathrm{~g} \mathrm{~mol}^{-1}
\end{aligned}
$$

February 6, 2006

