Size and Shape of Macromolecules: Diffusion and Light Scattering

Main References: 1. Chapters 5 & 7 of van Holde
2. Chapters 6 & 7 of Tinoco

Copyright: Jianhan Chen

Random Walk, Diffusion and Transport

- Random Brownian motion of molecules: diffusion
 - Driven by thermal energy
 - A fundamental process that underlies virtually all biomolecule separation techniques
 - Intimately related to mass, size and shape
- Transport process: diffusion under influence
 - Measured by (mass) flow \(J = \text{mass (or mole) per unit area per second} \)

Thermodynamic Equilibrium

- Without external influence, minimum free energy achieved with uniform concentration distributions
 - Separation require external work!

Maximum free energy
Minimum entropy

Minimum free energy
Maximum entropy

Fick’s First and Second Laws

- Transport by diffusion under a concentration gradient, \(C = C(x) \)
 \[J = -D \frac{\partial C}{\partial x} \]
 Fick’s 1st Law
 - \(D \): diffusion constant (how fast a substance diffuses)
 - \(J = 0 \) if \(C \) is uniform (i.e. \(\Delta C/\Delta x = 0 \))
- In most cases, concentration evolves with time as a result of diffusion, \(C = C(x,t) \)
 \[\frac{\partial C}{\partial t} = -\frac{\partial J}{\partial x} \]

Coupled with Fick’s first law, we have
 \[\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} \]
 Fick’s 2nd Law
 - Solving this “differential equation” requires so-called initial and boundary conditions, \(C(t=0) \) and \(C(x=\infty) \).
1D Diffusion with Concentration Impulse

- \(C = C_0 \) within a thin slab of thickness \(\delta \)
- \(C = 0 \) at \(x = \pm \infty \) at all time
- Solution:
 \[
 C(x,t) = \frac{C_0 \delta}{2\sqrt{\pi Dt}} e^{-x^2/4Dt}
 \]

Diffusion and Molecular Size/Shape

- Einstein’s relation: \(D = \frac{kT}{f} \)
 - \(f \): frictional coefficient (resistance to movement through solvent);
 - \(f \) is determined by the size and shape of the molecule as well as the viscosity of the solvent
- For spherical particles of radius \(r \): \(f = 6\pi\eta r \) (Stokes’s law)
 - \(\eta \): solvent viscosity
- Combine Stokes’s law and Einstein’s relation
 \[
 D = \frac{kT}{6\pi\eta r}
 \]
- Deviation from spherical shape (with the same volume) always leads to larger friction (and smaller diffusion constant)
 - “Effective” hydrodynamic radius often reported as: \(r = \frac{kT}{6\pi\eta D} \)
 - Can be misleading for irregularly shaped molecules

Mean Square Displacement

- Average position: \(\langle x \rangle = 0 \)
- Mean square displacement: \(\langle x^2 \rangle \neq 0 \)
- \[
 \langle x^2 \rangle = \frac{\int x^2 c(x,t)\,dt}{\int c(x,t)\,dt} = \frac{\int x^2 e^{-x^2/4Dt}\,dt}{\int e^{-x^2/4Dt}\,dt} = 2Dt
 \]
 - Indeed, \(D \) measures the diffusion speed!
 - Relation to random walks: available from simulation
 - Dynamic light scattering measurement of \(D \) (see later slides)

Friction Ratio

- The minimal friction coefficient is given by mass and partial specific volume:
 \[
 f_0 = 6\pi\eta V_p = 6\pi\eta \left(\frac{3mV_p^{1/3}}{4\pi} \right)
 \]
- Then the ratio of measured friction coefficient \(f \) with \(f_0 \) is indicative of the molecular shape (and solvation)
 - if \(f/f_0 \) is much greater than unity, the particle is significantly elongated and/or highly solvated (the later leads to larger effective size)
Example: diffusion of DNA in Cells

A cytoplasm

Fluorescence

B nucleus

C cytoplasm

nucleus

Fluorescence

Moving Boundary Sedimentation

- Analytical ultracentrifuge coupled with scanning absorption optical system
 - Speed of moving boundary: \(v = \frac{dr}{dt} = s \omega^2 \)
 - From measurement of \(s \), diffusion constant (or friction) is calculated, which in turn can be used to obtain the hydrodynamic radius

Sedimentation

- Concerns the motion of molecules in solutions or particles in suspensions in response to an external force such as gravity, centrifugal force or electric force
- Balance of forces
 - \(F_c = mr\omega^2 \) (centrifugal force)
 - \(F_b = -m_0 r\omega^2 \) (buoyancy)
 - \(F_d = -f \nu \) (friction)

\[
F_c + F_b + F_d = 0
\]

\[
mr\omega^2 - m_0 r\omega^2 - fv = 0
\]

\[
s = \frac{v}{r\omega^2} = \frac{m - m_0}{f} = \frac{m(1 - \nu \rho)}{f}
\]

\(\nu \): partial specific volume

- \(s \): sedimentation coefficient (has the unit of time)
- If \(m = m_0 \), \(s = 0 \) (no sedimentation)

Sedimentation Coefficients of common biological materials (in Svedbergs)

1 S = 10⁻¹³ second
Sedimentation Equilibrium

- External influence such as centrifugal or electric force can shift the equilibrium distribution of concentration and such a shift depends on a range of molecular properties including mass, size/shape, charges etc.

![Diagram of Sedimentation Equilibrium](image)

Mass Determination by Sedimentation Eq.

- Obtained from fitting $C(r)$: $C(r)/C(r_0) = e^{-m(1-\tau\rho)r_0^2/2kT}$
- Very accurate and works over a large range (u adjustable!)
- Noninteracting mixtures: multiexponential fitting
- Interacting mixtures: requires more complex functional forms for data fitting
 - Yields binding constants!

![Graph of Mass Determination by Sedimentation Eq.](image)

Light Scattering

- Wave-particle duality
 - scattering tied to the wave nature, while photoelectric effect and absorption explained by the particle nature
 - Wave nature: oscillating electric and magnetic components (electric magnetic radiation, or EMR)
 - A few basic relations: $c = \lambda u \mathbf{E} = h \mathbf{u}$

![Diagram of Light Scattering](image)
Single-Particle Scattering

- Polarized light
 \[\frac{i}{I_0} = \frac{16\pi^4 \alpha^4}{r^2 \lambda^4} \sin^2 \phi \]

- Unpolarized light
 \[\frac{i}{I_0} = \frac{8\pi^4 \alpha^4}{r^2 \lambda^4} (1 + \cos^2 \theta) \]

Scattering of Multiple Small Particles

- Rayleigh Scattering: if particles are much smaller than the wavelength (visible spectra: 380-750 nm)
 - Shorter wavelength (blue light) scattered more!
- In the limit of low concentration:
 \[\frac{i}{I_0} = N \frac{8\pi^4 \alpha^4}{r^2 \lambda^4} (1 + \cos^2 \theta) \]
 - Polarizability \(\alpha \) is ultimately linked to molecular weight (M) and concentration (C).
 \[R_0 = \frac{i}{I_0} \frac{1 + \cos^2 \theta}{r^2} = KC \]
 - Non ideal solutions: \(B = 2nd \) viral coefficient
 \[\frac{KC}{R_0} = \frac{1}{M} + 2BC + ... \]

Scattering of Larger Particles

- Mei Scattering: if particle size is greater than the wavelength
 - Such as viral particles; or x-ray and neutron scattering (small \(\lambda \))
 - Must include inference between light scattered from all scattering pints within the molecule
 - Provide information on mass, dimension and even internal structures!
 - Define so-called particle form factor \(P(\theta) \)
 - Estimation of M requires extrapolation to C=0 and \(\theta=0 \) (a practical limitation due to diffraction effects)
 \[\frac{KC}{R_0} = \frac{1}{P(\theta)} \left(\frac{1}{M} + 2BC \right) \]
 \[P(\theta) = 1 - \frac{h^2 R_0^2}{3} + ... \]
 \[R_0^2 = \frac{1}{2n^2} \sum_i \sum_j r_{ij}^2 \]

Dynamic Light Scattering

- Measure light scattering intensity as a function of time from a small volume (where local concentration fluctuates substantially due to Brownian motions)
 - The larger \(D \) is, the faster scattering intensity will fluctuate
 - Commonly analyzed with autocorrelation analysis:
 \[g^{(2)}(\tau) = \langle (i(t)) (i(t + \tau)) \rangle / \langle (i(t))^2 \rangle \]
 \[g^{(2)}(\tau) = 1 + ce^{-2\lambda h\tau}, \text{ with } h = 4\pi n\lambda^2 \sin(\theta/2) \]

\[\text{g}^{(2)}(\text{tau}) \text{ vs. tau} \]

\[\text{Dynamic light scattering intensity} \]