

7a. Oxygen-Binding Proteins

Jianhan Chen

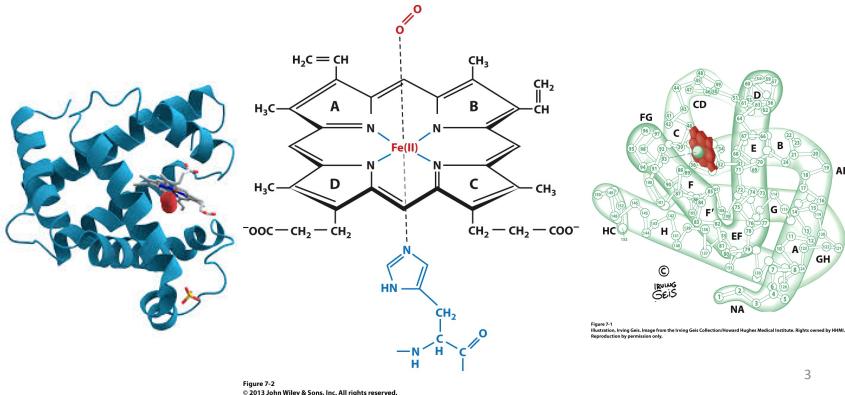
Office Hour: M 1:30-2:30PM, Chalmers 034

Email: jianhanc@ksu.edu

Office: 785-2518

7.1 Oxygen Binding to Hemoglobin & Myoglobin

• Key Concepts 7.1


- Myoglobin, with its single heme prosthetic group, exhibits a hyperbolic O₂-binding curve.
- Hemoglobin can adopt the deoxy (T) or oxy (R) conformation, which differ in O₂-binding affinity (classical allosteric model).
- Oxygen binding triggers conformational changes in hemoglobin so that oxygen binds to the protein cooperatively, yielding a sigmoidal binding curve.
- The Bohr effect and BPG alter hemoglobin's O₂-binding affinity.
- Mutations can change hemoglobin's O₂-binding properties and cause disease.

(c) Jianhan Chen

2

7.1A: Myoglobin

- First structure of proteins (1959 by John Kendrew)
- Vertebrate muscle
- 153 residues, 8 helices (A-H), ~44 x 44 x 25 Å
- Heme group: coordinate Fe(II), where O₂ binds

3

Myoglobin

Roles of the protein

- Several residues bind and stabilize Heme
 - Val E11/Phe CD1/His E7/His F8
- Fe(II) in free heme is oxidized when exposed to O₂ and Fe(III) does not bind O₂
- Protein coordination shift the electronic states and prevent Fe(II) oxidation

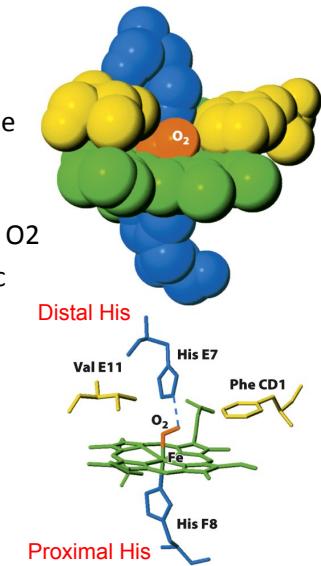
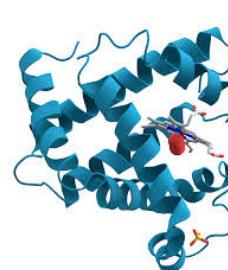
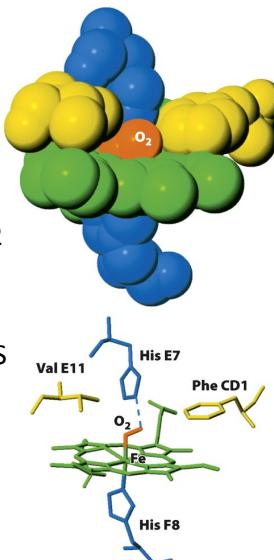



Figure 7-3
© 2013 John Wiley & Sons, Inc. All rights reserved.


(c) Jianhan Chen

4

Myoglobin

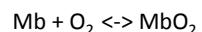
Roles of the protein

- Several residues bind and stabilize Heme
 - Val E11/Phe CD1/His E7/His F8
- Fe(II) in free heme is oxidized when exposed to O₂ and Fe(III) does not bind O₂
- Protein coordination shifts the electronic states and prevent Fe(II) oxidation
- Other small molecules such as CO, NO, H₂S can also bind to heme, and **with higher affinities!**
 - CO binds 200X stronger than O₂ and is thus particularly toxic!
 - Incomplete combustion, car exhaust etc

(c) Jianhan Chen

Figure 7-3
© 2013 John Wiley & Sons, Inc. All rights reserved.

Myoglobin


- First structure of proteins (1959 by John Kendrew)
- 153 residues, 8 helices (A-H), $\sim 44 \times 44 \times 25 \text{ \AA}$
- Heme group: coordinate Fe(II), where O₂ binds
- Function: mainly to facilitate O₂ diffusion in muscle
 - O₂ has low solubility in blood ($\sim 10^{-4} \text{ M}$), which limits diffusion from capillaries to tissues
 - Myoglobin increases the effective O₂ concentration
- Also as O₂ storage protein for aquatic mammals
 - 10X more myoglobin (first X-ray structure determined from sperm whale myoglobin)
- Other globins: prevent O₂ radical damage prevention
 - Neuroglobin: brain, retina and endocrine tissues
 - Cytoglobin: most tissues

(c) Jianhan Chen

6

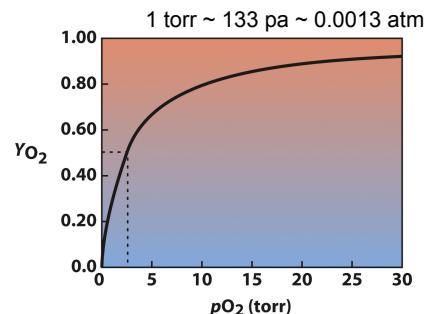
Binding Properties

Simple binary binding

$$K_D = [\text{Mb}][\text{O}_2]/[\text{MbO}_2]$$

Fractional saturation:

$$Y_{\text{O}_2} = [\text{MbO}_2] / ([\text{Mb}] + [\text{MbO}_2])$$

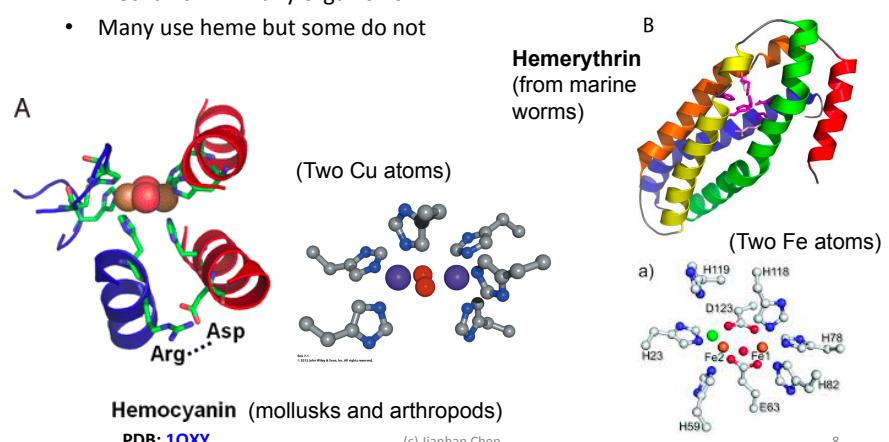

$$= [\text{O}_2] / (K_D + [\text{O}_2])$$

Hyperbolic curve

$K_D = p50$ (pO₂ when 50% saturated)

- 2.8 torr for myoglobin
- pO₂ ~ 100 torr in arterial blood and ~ 30 torr in venous blood
- $Y_{\text{O}_2} \sim 0.97$ and 0.91 respectively

Hyperbolic binding curve ubiquitous for all simple binary binding

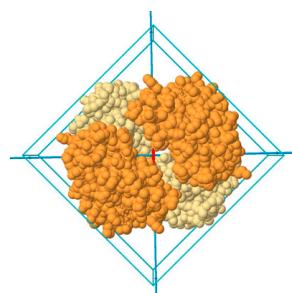
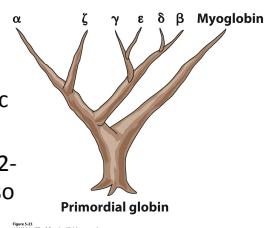

(c) Jianhan Chen

7

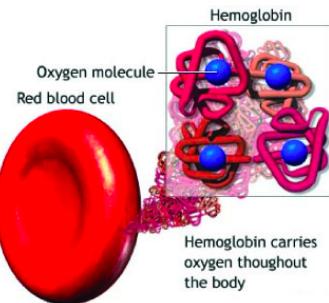
Other Oxygen Transport Proteins

Myoglobin: vertebrate muscle

- O₂ diffusion frequently a bottleneck and thus need for oxygen transport mechanism in many organisms
- Many use heme but some do not

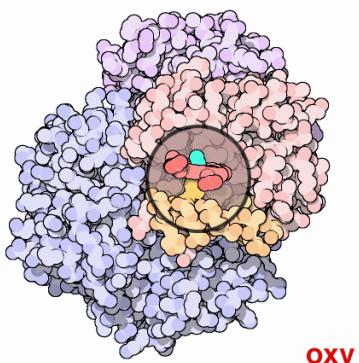



(c) Jianhan Chen


8

7.1B: Hemoglobin

- One of the first proteins to be associated with specific function (oxygen transport)
- Tetramer ($\alpha_2\beta_2$): dimer of $\alpha\beta$ protomers (related by 2-fold rotation, i.e., D2 symmetry); α and β subunits also have pseudo 2-fold symmetry
- Evolutionarily related to myoglobin with only $\sim 18\%$ identity (yet with very similar structures)


(c) Jianhan Chen

9

Deoxy- and Oxyhemoglobin Structures

- O₂ binding induces (mostly quaternary) structure changes

(show VMD)

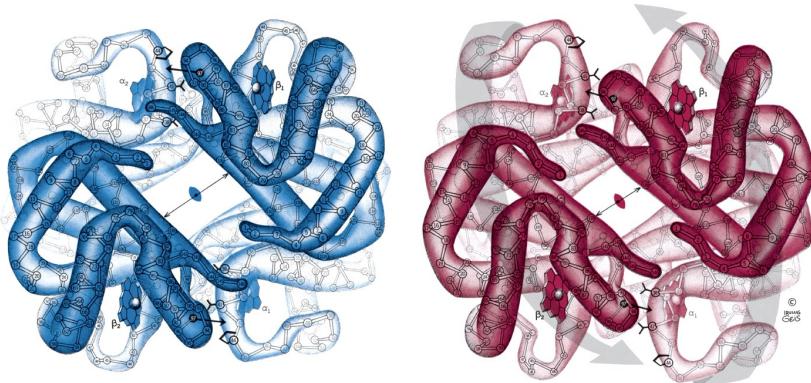
<http://www.rcsb.org/pdb/101/motm.do?momID=41>

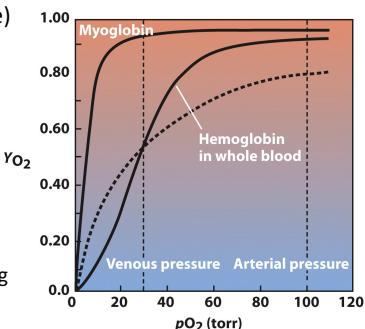
(c) Jianhan Chen

11

Deoxy- and Oxyhemoglobin Structures

- O₂ binding induces (quaternary) structure changes
 - ~ 150 rotation of one $\alpha\beta$ w.r.t. the other




Figure 7-5
Illustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes Medical Institute. Rights owned by HHMI. Reproduction by permission only.

(c) Jianhan Chen

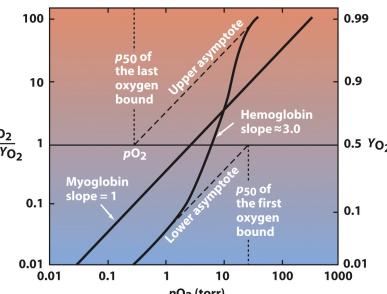
10

Cooperative binding of O₂: Importance for O₂ delivery

- Binding of O₂ to Hb is (quite) cooperative (i.e., tend to be all or none)
 - Arise from conformational changes upon O₂ binding
- $Hb + n O_2 \leftrightarrow Hb(O_2)_n$ (when fully cooperative)
- $$Y_{O_2} = [pO_2]^n / (p_{50}^n + [pO_2]^n)$$
- n , also known as **Hill's coefficient**
- Cooperative binding: **sigmoidal** (S-shape) curve instead hyperbolic curve
- Provide a mean for empirical fitting to infer binding mechanism
 - $n > 1$: positive cooperativity
 - $n < 1$: negative cooperativity

(c) Jianhan Chen

12

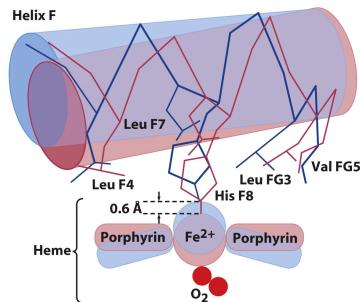

Hill's Plot

$$Y_{O_2} = [pO_2]^n / (p_{50}^n + [pO_2]^n)$$

$$Y_{O_2} / (1 - Y_{O_2}) = [pO_2]^n / p_{50}^n$$

$$\log(Y_{O_2} / (1 - Y_{O_2})) = n \log[pO_2] - n \log p_{50}$$

- maximal slope $\sim Y_{O_2} = 0.5$
- Hemoglobin not infinitely cooperative
- Three linear regimes
 - Low pO_2 : first O_2 binding, myoglobin like
 - Intermediate O_2 : cooperative, maximal slope reached near $Y_{O_2} = 0.5$
 - High pO_2 : last O_2 occupancy, no observable cooperativity either
 - Note that p_{50} of last O_2 bound is much lower than p_{50} of first O_2 bound

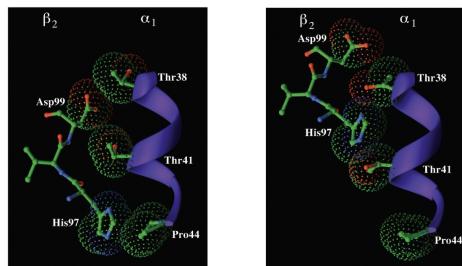


(c) Jianhan Chen

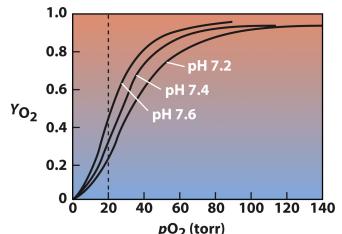
13

Hemoglobin Cooperativity Mechanism

- Heme binding sites distal on four subunits of Hb
- Cooperativity arises from conformational changes driven by O_2 binding
- The classical Perutz mechanism of allostery
 - Two stable states: T (deoxy-) and R (oxy-) states
 - R-state driven by binding of first O_2 and has high O_2 affinity

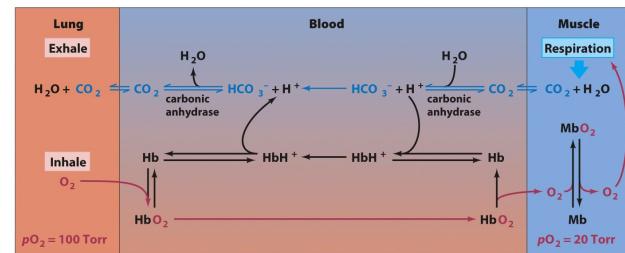
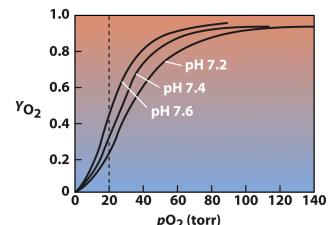

T (blue) to R (red) transformation:
Fe(II) is $\sim 0.6 \text{ \AA}$ above in T-state and does not coordinate O_2 as well and leads to structural strains

(c) Jianhan Chen


14

Bohr Effect

- The conformation changes associated with O_2 binding (T \rightarrow R) also lead to disruption of several salt-bridges and pKa decrease
- ~ 0.6 proton release per O_2
- pH can thus modulate O_2 binding to Hb
 - Increasing pH stimulates O_2 binding and vice versa!



(c) Jianhan Chen

15

Bohr Effect

- The conformation changes associated with O_2 binding (T \rightarrow R) also lead to disruption of several salt-bridges and pKa decrease
- ~ 0.6 proton release per O_2
- pH can thus modulate O_2 binding to Hb
 - Increasing pH stimulates O_2 binding and vice versa!
- In tissues: CO_2 accumulation lowers pH and reduces $Hb-O_2$ binding and releases O_2 !
 - Robust built-in feedback loop!

16

BPG Regulation of Hb-O₂ binding

- Bisphosphoglycerate (BPG) binds to deoxy-Hb much tighter than oxy-Hb
- Presence of BPG in red blood cells stabilize deoxy-Hb (w.r.t oxy-Hb) and thus facilitates O₂ release

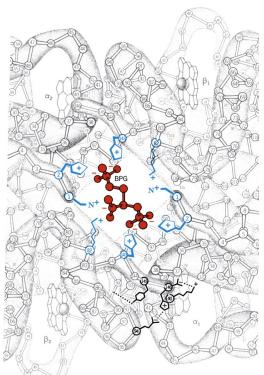
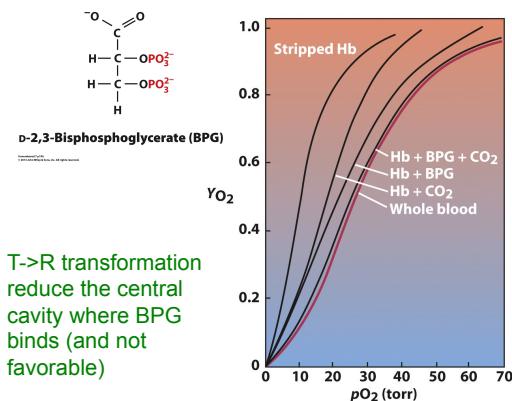
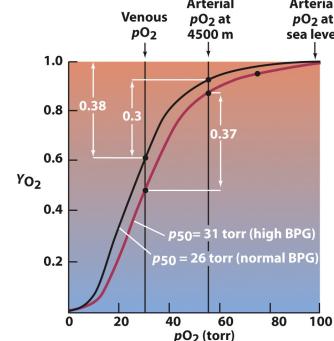


Figure 7-14
Illustration, Irving Geis. Image from the Irving Geis Collection/Howard Hughes Medical Institute. Rights owned by HHMI. Reproduction by permission only.




Figure 7-13
© 2013 John Wiley & Sons, Inc. All rights reserved.

T>R transformation
reduce the central
cavity where BPG
binds (and not
favorable)

(c) Jianhan Chen

BPG Regulation of Hb-O₂ binding

- Bisphosphoglycerate (BPG) binds to deoxy-Hb much tighter than oxy-Hb
- Presence of BPG in red blood cells stabilize deoxy-Hb (w.r.t oxy-Hb) and thus facilitates O₂ release
- BPG level regulates p₅₀ values and plays a role in high-altitude adaptation

Box 7-3
© 2013 John Wiley & Sons, Inc. All rights reserved.

(c) Jianhan Chen

- 1-day stay could increase BPG from ~4 mM to 8 mM
- p₅₀ of Hb increases from 26 to 31 torr
- @ sea level: 38% O₂ released with arterial to venous pO₂ change
- If not BPG modulation, only 30% O₂ release due to lower arterial pO₂
- w/ BPG increase: ~37% O₂ release
- Thus, a rapid response before more Hb can be made

18

Hemoglobin Mutations

- ~300,000 people born every year with serious Hb disorders!
- Consequences of mutations ultimately considered in the ability to transport (and properly release) O₂!

TABLE 7-1 Some Hemoglobin Variants

Name ^a	Mutation	Effect
Hammersmith	Phe CD1(42) β \rightarrow Ser	Weakens heme binding
Bristol	Val E11(67) β \rightarrow Asp	Weakens heme binding
Bibba	Leu H19(136) α \rightarrow Pro	Disrupts the H helix
Savannah	Gly B6(24) β \rightarrow Val	Disrupts the B-E helix interface
Philly	Tyr C1(35) β \rightarrow Phe	Disrupts hydrogen bonding at the α_1 - β_1 interface
Boston	His E7(58) α \rightarrow Tyr	Promotes methemoglobin formation
Milwaukee	Val E11(67) β \rightarrow Glu	Promotes methemoglobin formation
Iwate	His F8(87) α \rightarrow Tyr	Promotes methemoglobin formation
Yakima	Asp G1(99) β \rightarrow His	Disrupts a hydrogen bond that stabilizes the T conformation
Kansas	Asn G4(102) β \rightarrow Thr	Disrupts a hydrogen bond that stabilizes the R conformation

^aHemoglobin variants are usually named after the place where they were discovered (e.g., hemoglobin Boston).

Table 7-1
© 2013 John Wiley & Sons, Inc. All rights reserved.

(c) Jianhan Chen

19

Sickle-Cell Anemia: Single Amino Acid Change!

- Glu6 \rightarrow Val
- ~10% African American and ~25% black African carries a single copy of the sickle-cell Hb gene (Hemoglobin S)
- Deformed red blood cells (and thus the name)
- Speculated and later demonstrated by Linus Pauling in 1950's
- Structural data shows that Val forms hydrophobic pockets and promote linear polymers of Hb, and could lead to blood flow blockage

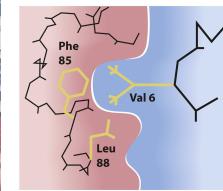


Figure 7-4
© 2013 John Wiley & Sons, Inc. All rights reserved.

20

Hemoglobin S and Malaria

- Sickle-cell genes confers resistance to malaria
- Bohr effect:

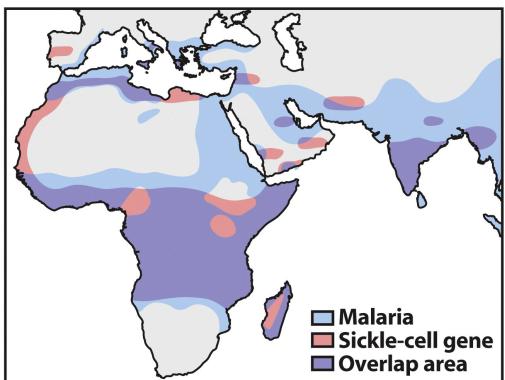


Figure 9.20
© 2013 John Wiley & Sons, Inc. All rights reserved.

(c) Jianhan Chen

21

Summary

- Describe the O_2 -binding behavior of myoglobin in terms of pO_2 and K . How is K defined?
- Explain the structural basis for cooperative oxygen binding to hemoglobin.
- Sketch a binding curve (% bound ligand versus ligand concentration) for cooperative and noncooperative binding.
- Explain why the O_2 -binding behavior of myoglobin and hemoglobin can be summed up by a single number (the $p50$).
- Could a binding protein have a Hill constant of zero?
- Describe how myoglobin and hemoglobin function in delivering O_2 from the lungs to respiring tissues.
- What is the physiological relevance of the Bohr effect and BPG?
- Mutations can increase or decrease the oxygen affinity and cooperativity of hemoglobin. How can the body compensate for these changes?

22